

Transoft U/SQL
User Guide

Copyright © 2004-2007 Computer Software Group

This document is copyright and all rights are reserved. It may not, in whole or in
part, be copied, photocopied, reproduced, translated or reduced to any electronic
medium or machine readable form without prior permission in writing from
Transoft.

Transoft, part of Computer Software Group, reserves the right to make

changes in specifications and other information contained in this

document without prior notice.

Whilst Transoft endeavours to ensure the accuracy of the contents of this
document, no liability is accepted for any error or omission.

Transoft and e-volutionary solutions are either registered trademarks and/or
trademarks of Transoft in various countries throughout the world. All other
marks, names and logos may be the trademarks of their respective owners.

Transoft (Atlanta office)
1165 Northchase, Suite 375, Marietta, GA 30067, USA
Phone: +1 (770) 933 1965
Fax: +1 (770) 933 3464

Transoft (Dayton office)
7333 Paragon, Suite 250, Dayton, OH 45459, USA
Phone: +1 (937) 438 5553
Fax: +1 (937) 438 5377

Transoft (UK office)
Transoft House, 5J Langley Business Centre, Station Road, Langley, Slough, SL3
8DS, England
Phone: +44 (0) 1753 778000
Fax: +44 (0) 1753 773050

Please use e-mail to contact us wherever possible:

Americas: USSupport@transoft.com

Rest of the World: UKSupport@transoft.com

Web site: http://www.transoft.com
http://www.computersoftware.com/

i

Table Of Contents
Introduction..1

Installation and Licensing ...3

Installation and Licensing ..3

Installing the Multiple-Tier U/SQL Server ...4

Server platforms supported...4

Installing the UNIX U/SQL Server Software ...4

Installing the Windows NT U/SQL Server Software6

Uninstalling U/SQL Server on Windows NT Server9

The Next Steps..9

Installing the Single or Multiple-tier U/SQL client ..10

System Requirements...10

Contents of U/SQL Client Software...10

Installing the Client Software ...12

De-installing the U/SQL Client Software..18

The Next Step ...19

Installing and Licensing Vista Business edition..20

Installing HTTP Server on Windows...24

U/SQL Client Browser on Windows ...24

Getting started with the HTTP Server ...26

Limitations ..28

Installing HTTP Server on UNIX ..30

U/SQL HTTP Client Browser on UNIX ..30

Getting started with the HTTP Server ...31

Limitations ..33

Licensing ...35

Licensing ..35

Installing the U/SQL Client License...36

Installing the U/SQL Server License..41

Installing the Server License on UNIX Platforms.......................................42

Installing the Server License on Windows NT Server.................................47

Starting U/SQL with Licensing ...51

Unattended Client installation ...55

Unattended Client installation...55

Introduction ..55

How to perform Unattended (Silent) installations55

InstallShield - Common error codes ..59

Configure and Use ...61

ODBC Overview..61

ODBC Overview ...61

Table Of Contents

ii

ODBC Compliance ..65

System and User Data Sources..71

File Data Sources...72

Single-tier Administration ..77

Installed Files ..77

U/SQL Administrator ..78

Entering the ODBC.INI Directives...79

Multiple-tier Administration (Windows) ..82

U/SQL Server Installation on Windows..82

U/SQL Service Manager ..84

U/SQL Server Directives ...89

U/SQL Administrator Facilities ...91

Multiple-tier Administration (UNIX) ...95

U/SQL Server Installation on UNIX...95

Starting and Stopping the UNIX Server...98

Setting up the UNIX usqlsd.ini File ...99

Micro Focus COBOL Specific Issues... 103

Additional Information .. 104

Client Configuration .. 105

U/SQL Client Installation Files.. 105

Interactive U/SQL Utilities... 106

Win U/SQLi ... 107

usqli on UNIX Servers... 123

JDBC Client ... 133

INI Directives... 134

ODBC.INI Directives... 134

UNIX Client-Side Directives ... 136

Configuration Section ... 137

Data Source Defaults Section .. 140

Data Source Section... 145

Foreign Character Set Support... 146

Advanced Directives ... 147

Validation Rules for Security Directives... 155

COGNOS Impromptu Outer Join Directives .. 157

The USQLCS.LOG File and Error Reporting ... 158

The USQLCS.LOG File and Log Levels ... 158

Error Messages.. 163

SQL Support .. 167

SQL Syntax Supported.. 167

Sample Queries ... 168

Table Of Contents

iii

READ_ONLY Views ... 176

Limitations .. 178

Transaction Processing ... 179

Locking... 182

Security... 183

Security.. 183

Multiple-tier Security - User Connection .. 184

GRANT and REVOKE Security... 188

Query Planning... 194

Query Planner ... 194

Tuning the Query Planner ... 199

Query Planner Hinting .. 209

Sample Applications.. 211

Demonstration - Books Wholesaler... 211

Writing Applications Using U/SQL To Access Your Data 218

General UDD Information .. 223

Overview .. 223

Creating a UDD.. 225

Expression Handling... 229

Handling of Data Arrays.. 232

Limitations .. 247

Specific UDD Information... 248

Setting Up a COBOL Data Dictionary .. 249

Setting Up a C-ISAM Data Dictionary.. 352

Setting Up a Business BASIC Data Dictionary .. 370

Setting Up a U/FOS Data Dictionary ... 391

Enterprise Join Engine... 411

Enterprise Join Engine .. 411

Using the Enterprise Join Engine .. 413

Configuring the EJE on UNIX ... 420

Configuring Multi-Datasource U/SQL EJE on UNIX 422

Configuring U/SQL EJE Thin Client to Connect to the SQL Server.............. 426

Configuring U/SQL EJE for MS Access, MS Query or Crystal Reports 430

Advanced Use .. 432

Advanced Use of U/SQL Adapters... 432

Multi-company Support... 433

Issues and Limits... 434

Accessing the UDD System Tables.. 436

Hints and Tips ... 440

Troubleshooting.. 443

Table Of Contents

iv

Troubleshooting... 443

Appendices ... 445

Appendix A - Support Information... 445

Appendix B - Sample License Form ... 446

Appendix C - U/FOS data type enhancements .. 447

Appendix D - ACUCobol Configurable Variables... 448

Appendix E - MFOCUS Configurable Variables... 449

Printed Documentation... 451

Index... 453

1

Introduction

Transoft U/SQL Adapters (U/SQL) provides direct Microsoft ODBC (open
Database Connectivity) access to your COBOL, C-ISAM, BASIC and other non-
relational data.

This enables you to use the widest possible variety of PC Windows products
without changing your code or exporting your data.

�� Office Systems

Create direct links from your data into spreadsheets or WP documents.

�� Report Writers and Business Intelligence Tools

Use the latest GUI-based reporting and decision support products, such as
Crystal Reports, Cognos Impromptu and IQ/Objects.

�� Windows-based Development Tools

Modernise your applications by selectively developing and integrating
modules in Microsoft Visual Basic, Delphi, PowerBuilder and so on.

The major elements of U/SQL are:

�� The ODBC driver whose settings are defined by the U/SQL Administrator.

�� The U/SQL Server, including optimized query planner.

�� Data source drivers that access non-relational data, including specific data
source drivers for ACUCOBOL Vision, Micro Focus Callable File Handler
(EXTFH), C-ISAM, Business Basic ISAM, U/FOS and so forth.

Using two-level data dictionary technology, U/SQL provides a 'relational view' of
your non-relational data. The Universal Data Dictionary (UDD) provides a
relational description of your data and the Universal File Dictionary (UFD)
describes the physical structure of the files being accessed.

 The two-level data dictionary technology

3

Installation and Licensing

Installation and Licensing

This section describes how to install and license both Single-tier and Multiple-
tier U/SQL.

�� In the Single-tier model of U/SQL, both the Client and Server elements
reside on the same platform, for example, a Windows 2000 based PC.

�� In the Multiple-tier model of U/SQL, the U/SQL ODBC driver resides on the
client platform, which is connected via a LAN to the server platform, where
the U/SQL Server and Data Source Driver reside. For example, your client
platform could be a Windows 95 PC and your server platform a UNIX or
Windows NT Server machine.

The following sections describe:

�� Installing the Multiple-tier U/SQL server

�� Installing the Single or Multiple-tier U/SQL client.

Transoft U/SQL User Guide

4

Installing the Multiple-Tier U/SQL Server

Note: You must install the Multiple-tier U/SQL Server software first in order to
obtain a free TCP/IP socket port number. You need to enter this when you
subsequently install the U/SQL Client software.

The U/SQL Server software is available on many UNIX platforms for all data
sources and on Windows NT Server and Windows 2000 Server for selected data
sources including ACUCOBOL, Micro Focus COBOL and BBASIC ISAM.

This section covers:

�� Server platforms supported

�� Installing the U/SQL Server Software on UNIX

�� Installing the U/SQL Server Software on Windows NT.

Server platforms supported

The U/SQL Server software is available on various UNIX platforms for all Data
Source Drivers and on Windows NT Server 4 for selected data sources, including
ACUCOBOL, BBASIC ISAM, Micro Focus COBOL.

Contact your Transoft Account Manager for a complete list of platforms and data
sources supported.

Installing the UNIX U/SQL Server Software

Note:

�� If you are installing a new version of the U/SQL Server software into the
same directory as a previous version, ensure that the U/SQL Server
executable, usqlsd, is NOT running, otherwise it will not be replaced by
the new version.

�� If you are installing a release that has U/SQL HTTP Server (U/SQL 421
onwards) then include extra steps from the following document
Installing_HTTP_Server_on_UNIX

To install the U/SQL Server software, perform the following steps:

1. Create a base directory for the U/SQL Server software and use tar to copy
the files from the media. For example, to install the software in the
directory /usr/usqls, enter the following:

 su : become superuser

 cd /usr

 mkdir usqls : make the usqls directory

 cd usqls

2. Next, insert the first diskette or tape, in a suitable peripheral drive, and
then issue the tar copy command as either:

Installation and Licensing

5

 tar -xv : if the peripheral is the default one, or

 tar -xvf
/dev/<device_name>

: where <device_name> is the name of the
peripheral used

Note: If the U/SQL Server software has been supplied on more than one
floppy disk, then you will be asked to insert the next disk at step 4. C.,
below.

3. Display or print the README release notice, to be found in the base
directory where you installed the U/SQL Server software, for example,
/usr/usqls. Either:

 more README : to display the contents, or

 lp README : to print the contents

Note: Read the Release Notice carefully before continuing with the
installation as it may contain information that supersedes details given in
this Help file.

4. Run the script install.sh in your U/SQL Server software base directory, for
example, /usr/usqls:

cd /usr/usqls

./install.sh

This script performs the following:

A. It checks that you are logged on as a superuser.

B. It checks that you have TCP/IP installed and that it is enabled.

C. If your U/SQL Server software has been supplied on more than one
floppy disk, then it displays the following:

TRANSOFT U/SQL SERVER INSTALLATION

Extract of media not complete. Extract remaining disks.
About to read from disk device /dev/rfd0135ds18
Insert disk 2 into drive and press

 'c' to change device name
 'q' to quit
or RETURN to load disk

>c

Note, if you enter 'c':

What device do you want to extract from?
Enter a number or a device name.
 0) /dev/rfd048ds9
 1) /dev/rfd148ds9
 2) /dev/rfd0135ds18
Device? 2

The device names are dependent on the hardware platform. The
above procedure is repeated for each additional floppy disk.

D. It decompresses and checksums the files to ensure they are not
corrupt.

E. If the installation detects a Micro Focus environment, then the
following is displayed:

The installation has detected a Micro Focus environment.

Transoft U/SQL User Guide

6

You will be informed of the Micro Focus revisions supported by the
U/SQL Server executable and then offered the following option:

Do you wish to run a test to confirm that U/SQL Server will
operate in your environment (Y/N): Y

You may obtain the message:

The Micro Focus environment is not satisfactory for the
U/SQL Server executable included in this release. Refer to
the text file MF_LINK.TXT in the lib sub-directory for
instructions on how to re-link the U/SQL Server using your
Micro Focus environment.

In which case follow the instructions in the MF_LINK.TXT file. If the
environment is satisfactory, you will obtain the message:

Micro Focus environment satisfactory for U/SQL Server
executable.

You will then be asked to select the revision of Micro Focus COBOL
ISAM you are using.

Please select the revision of Micro Focus ISAM you are
using:
(Failure to select the correct format may result in locking
problems)

1. MF-ISAM Rev 3 (the Micro Focus default)
2. MF-ISAM Rev 4
3. MF-ISAM Rev 5

Select (1, 2 or 3):

Usually, you will select the Micro Focus default (1), unless you have
re-linked your Micro Focus COBOL run-time to incorporate one of the
other Micro Focus ISAM options.

F. It offers a further opportunity to display or print the README release
notice.

G. It tests for a free TCP/IP socket port and displays the number. You
must record this number as it is required when you install the U/SQL
Client software.

Record the port number. If you forget this port number, you can find
it in the install.data file in the base directory of your U/SQL Server
installation, for example, /usr/usqls, by performing:

cd /usr/usqls

more install.data

H. For most platforms it requests whether you wish to have the U/SQL
Server started automatically at system boot time.

Do you wish to have the U/SQL Server start at system boot
time ? (y/n):

Answer 'y' or 'n'

At this point the installation of UNIX U/SQL Server software is complete.
You now need to install your U/SQL Server license. Refer to the section
Installing the U/SQL Server License.

Installing the Windows NT U/SQL Server Software

Installation and Licensing

7

Windows NT Server

Note:

�� If you are installing a release that has U/SQL HTTP Server (U/SQL 421
onwards) then include extra steps from the following document
Installing_HTTP_Server_on_Windows

To install the U/SQL Server software on Windows NT Server 4.0 or higher,
proceed as follows:

1. Ensure you are logged on with 'Administrator privileges'. Insert the U/SQL
installation CD-ROM into your CD-ROM drive. Either, from Windows
Explorer, run install.exe, or it will automatically load if 'auto insert' is set
on your CD-ROM drive. The install program displays the Welcome dialog
box:

2. Click the ReadMe button to view the latest Release Notice (in HTML). Click
the Contents button for a summary of the U/SQL CD Installation
Contents (in HTML).

3. To install U/SQL Server software, select the U/SQL Multiple-tier Server
Installation option and either:

�� Click the Install button on the Welcome screen, or

�� Select the Install option from the Contents document.

4. At this point you will be requested to enter a password to confirm which
U/SQL Server software you have ordered and wish to install:

Transoft U/SQL User Guide

8

The password is shown on your Transoft Software Installation form,
supplied with the CD-ROM, along side the U/SQL XXXXX Server (Multi-
tier) entry, for example, U/SQL ACUCOBOL Server (Multi-tier).

The password is of the form DRVn-XXX-ABCDEFG where XXX will be, for
example, ACU for ACUCOBOL.

If you entered an invalid password then an error message is displayed.
Click Yes to re-enter the password. Click No to abort the installation.

5. The installation tests for a free TCP/IP socket port and displays the
number.

You must record this number as it is required when you install the U/SQL
Client software.

The port number a server is running on can also be displayed and changed
from the U/SQL Service Manager utility.

6. You will also be asked if you want the U/SQL Server to be started as an NT
Service, either automatically each time the NT machine is started, or
manually as required.

7. The installation of the U/SQL Server is now complete. It will have created
the U/SQL Adapters program group containing:

�� U/SQL Service Manager

�� U/SQL Server Release Notes

�� unInstallShield for removing the U/SQL Server software.

8. From the Windows Start/Programs menu select the U/SQL program
group and from the group select the U/SQL Server Release Notes.
Ensure you read these notes carefully before continuing with the
installation as they may contain information that supersedes details given
in this Guide.

9. You now need to install your U/SQL Server license. Refer to the Installing
the Server License on Windows NT Server section for more information.

Installation and Licensing

9

Uninstalling U/SQL Server on Windows NT Server

Windows NT Server

To uninstall the U/SQL Server software, you must:

�� Use the U/SQL Service Manager utility to select the Service to be
uninstalled and click the Uninstall Service button. This removes Windows
NT Server's own registry entries.

�� Use the U/SQL uninstallShield to remove the U/SQL Server software.

The Next Steps

Now you can:

1. Install the U/SQL Server license as described in the Installing the Server
License on Windows NT Server section.

2. Install the Multiple-tier U/SQL Client software on each user's workstation,
as described in the section Installing the Single or Multiple-tier U/SQL
Client. Then license each client as described in the section Installing the
U/SQL Client License.

Transoft U/SQL User Guide

10

Installing the Single or Multiple-tier U/SQL client

System Requirements

Windows

Before you install the U/SQL Client software, check that you have the following:

�� An IBM or 100% compatible PC, with 486 processor or better.

�� A hard disk, with a minimum of 30 MB of disk space free, if all components
are to be installed.

�� A CD-ROM drive.

�� The amount of PC memory required will depend on the Windows
applications that are being run. Most ODBC-enabled products require
substantial memory. In practice, you are likely to require a minimum of 16
MB.

For Multiple-tier versions of U/SQL:

�� TCP/IP software on the PC which must be Windows Sockets based,
implemented as WINSOCK-compliant. The driver is WSOCK32.DLL which
must exist in the \WINDOWS directory for Windows 95 and in the
\WINNT\SYSTEM32 directory for Windows NT. Examples of compliant
TCP/IPs include the TCP/IP supplied with Windows 95 and NT and the
latest versions of Distinct’s TCP/IP, Sun’s PC-NFS and FTP’s PC/TCP.

Note: TCP/IP must be fully installed. Just copying the winsock DLL is not
sufficient.

�� The PC must have a network card compatible with the TCP/IP loaded.

�� A working network connection to a host with TCP/IP.

�� Ensure you have installed the Multiple-tier U/SQL Server software and
have noted the host name and the TCP/IP socket port number, as these
are required when installing the U/SQL Client. Refer to the section
Installing the Multiple-tier U/SQL Server.

Contents of U/SQL Client Software

The standard shipping versions of U/SQL Client software are 32-bit based and
support the following platforms:

�� Microsoft Windows 95, 98 and Windows NT 4.0 or later

The U/SQL Client software consists of the following components:

�� U/SQL Administrator - This is always installed and is used to configure
the ODBC directives for each data source and the Universal Data
Dictionary (UDD).

�� U/SQL Manager - This is optionally purchased. It is only applicable to
COBOL data sources and is used to maintain the UDD.

�� ODBC Driver and System files - The appropriate ODBC Driver is
determined by whether you are installing a Single-tier version of U/SQL,
for example for ACUCOBOL or Micro Focus COBOL, or the Multiple-tier

Installation and Licensing

11

version, which is the same regardless of the U/SQL Server (UNIX or
Windows NT Server) and data source.

�� Win U/SQLi - This Interactive U/SQL utility is useful for the development
and testing of specific SQL queries and for (bulk) INSERTs, UPDATEs or
DELETEs to your data. In addition, it provide a facility for exporting and
importing UDDs. This facility is used to upgrade UDDs and can be used to
correct errors that may have been encountered in a UDD.

�� License Tool - The License Tool is used to install your U/SQL Client
license.

�� TestNet - This utility is used to troubleshoot your ODBC Winsock and
network compliance. It is most helpful for troubleshooting Multiple-tier
installations.

�� Books Demonstration - This is a sample Visual Basic application.

�� System & File Information utility - This utility provides information on
the System, ODBC files and Data Source Drivers installed.

�� Release Notice - This can be viewed and printed. Ensure you read the
Release Notice carefully as it may contain information not contained in the
Online Help file.

The U/SQL Client software gives you the option to be selective in the components
that are installed. These are grouped by Compact, Typical or Custom, as
follows:

Compact Installs the U/SQL Administrator, License Tool, Online Help file,
Release Notice, ODBC Driver and System files.

Typical Installs all of Compact plus the Win U/SQLi utility and the Books
Demonstration application. Typical will be the usual installation
selection, unless the U/SQL Manager is to be installed (when
Custom is selected).

Custom Installs as default the same contents as Typical. Extra options are
the U/SQL Manager and its Creating a COBOL Dictionary manual,
if purchased for COBOL data sources only, and TestNet. It is also
possible to optionally select most of the components individually.

Note: The U/SQL Manager is only available as a 32-bit product and you must
select it from the options in the Custom installation.

To install the software refer to the section Installing the Client Software.

Transoft U/SQL User Guide

12

Installing the Client Software

To avoid possible U/SQL Client installation problems:

�� Re-start Windows before installing to ensure no tasks are memory resident
that could affect installation, this should include shutting down even the
Microsoft Office Toolbar.

�� When installing on Windows NT ensure you are logged on with
‘Administrator privileges’.

If you have problems after installation, such as Win U/SQLi will not connect to a
data source, then reboot your PC and re-install the U/SQL Client software. First
de-install the original version as described in the section De-installing the U/SQL
Client Software.

Windows

To install the U/SQL Client software proceed as follows:

1. Insert the U/SQL installation CD-ROM in your CD-ROM drive. Using
Windows Explorer, run install.exe, or it will automatically load if ‘auto
insert’ is set on your CD-ROM drive. The install program displays the
Welcome dialog box:

2. Click the ReadMe button to view the latest Release Notice (in HTML). Click
the Contents button for a summary of the U/SQL Client CD
Installation contents (in HTML).

In addition to installing the U/SQL Client software, you can also install
Microsoft ODBC 3.0 Driver Manager components. These are required
for some of the latest ODBC-enabled products.

3. Select the U/SQL Multiple-tier/Single-tier Client software option and
click the Install button.

4. The installation prepares the InstallShield Wizard that will guide you
through the installation process. The Welcome dialog box is displayed:

Installation and Licensing

13

5. Click Next. The Choose Destination Location dialog box is displayed:

Decide, using the browser where you want to install the U/SQL Client. The
default location is C:\Program Files\USQLC. Click Next.

6. The Setup Type dialog box is displayed:

Transoft U/SQL User Guide

14

Note: If you have optionally purchased the U/SQL Manager, for COBOL
data sources, you must select the Custom install.

Choose one of the following options (the default is Typical):

Compact - Installs the U/SQL Administrator, License Tool, manuals,
Release Notice, ODBC Driver and System files.

Typical - Installs all of Compact plus the Win U/SQLi utility and the Books
Demonstration application.

Custom - Installs as default the same contents as Typical. Extra options
are the U/SQL Manager and its Creating a COBOL Dictionary manual, if
purchased for COBOL data sources only, and TestNet. It is also possible to
optionally select most of the components individually.

Installation and Licensing

15

Custom is also be used to install any component that was not installed in
the original U/SQL Client software installation. The installation process is
repeated but, for example as you have been having network problems, you
only select to install TestNet.

If you wish to have a Dual-tier installation, that is have both Single and
Multiple-tier ODBC Drivers installed so you can access both local PC based
data and remote server based data, then you would use the Custom option
to select only ODBC Drivers to install the second ODBC Driver.

Click the Change button to allow the selection of Sub-components. The
Select Sub-components dialog box is displayed:

Transoft U/SQL User Guide

16

You can decide that you do not require, for example, Win U/SQLi to be
installed.

7. At this point you will be requested to enter a password to confirm the
ODBC Driver you have ordered and wish to install:

The password is shown on your Transoft Software Installation form,
supplied with the CD-ROM, along side the U/SQL ODBC Driver entry, for
example, U/SQL ODBC Driver (32-bit MT).

The password is of the form DRVn-XXX-ABCDEFG where XXX will be, for
example, ACU for Single-tier ACUCOBOL and MF for Micro Focus COBOL; MT
for Multiple-tier. Other Single-tier versions are also available.

If you enter an invalid password an error message is displayed. Click Yes to
re-enter the password. If you click No, then the ODBC driver will fail to be
installed and it is recommended you abort the installation.

8. Next select your Program Folder, the default is USQL Client:

Installation and Licensing

17

Click Next.

9. At this point the installation displays what it intends to install from the
selection you have made:

If you want to make any changes before proceeding with the installation
click the Back button. Otherwise, click Next to start installing the software.

10. Once the U/SQL Client software has finished installing, then if you are
installing the Multiple-tier ODBC Driver, you will be requested to enter the

Transoft U/SQL User Guide

18

Host name and Port Number of the UNIX or Windows NT Server on
which you have installed the U/SQL Server software:

Click Next.

11. After the installation of the ODBC Driver and if you have selected to install,
in step 6, the U/SQL Manager for COBOL data sources, then you will be
presented with the following message:

Click Yes to continue with the installation. If for any reason you do not
want to install the U/SQL Manager, then click No.

12. Unless you are upgrading the U/SQL Client software and therefore already
have a license installed, you will be presented with the License Tool and
License Installation Instructions. You can install the U/SQL Client
license as part of this software installation process, or any time later, as
described in the section Installing the U/SQL Client License.

13. You will be presented with the "USQL Setup complete" screen. Click
"Finish" to exist the installation.

De-installing the U/SQL Client Software

Windows 95 & NT

Installation and Licensing

19

The U/SQL Client software may be de-installed as follows:

1. Remove the U/SQL Client ODBC driver using the U/SQL Administrator.
Select the Drivers dialog tab, highlight the Transoft ODBC Driver to be
removed and click Remove.

2. Remove the U/SQL Client application software using the Windows Control
Panel. Select Add/Remove Programs, select the Install/Uninstall
tab, and then the U/SQL Client Rev x.xx entry. Follow the on-screen
instructions.

The Next Step

In order to install the U/SQL Client license refer to the section Installing the
U/SQL Client License.

Transoft U/SQL User Guide

20

Installing and Licensing Vista Business edition

Additional installation instructions for installing the U/SQL Server on Vista
Business:

• After installing the U/SQL server, locate the service manager executable
(usqlsm.exe), right click on the usqlsm.exe, select properties->compatibility and
check the "Run this program as administrator" option in the 'Privileges' section.

• When licensing (i.e. initial install or subsequent upgrade) the U/SQL Client, you
must run license tool as Administrator.

Installation and Licensing

21

• When adding, configuring or deleting a System DSN, you must run the U/SQL
Administrator as 'Administrator' i.e. right click on the target > select 'Run As
Administrator'.

Transoft U/SQL User Guide

22

• When adding, configuring or deleting a User DSN, you can run the U/SQL
Administrator as an ordinary user.

• When using the U/SQL Manager you must run it as 'Administrator' i.e. right click
on the target > select 'Run As Administrator'.

Installation and Licensing

23

• Please also note that Win USQLi can be run as an ordinary user.

Transoft U/SQL User Guide

24

Installing HTTP Server on Windows

U/SQL Client Browser on Windows

Introduction

Transoft’s U/SQL HTTP Server, introduced in engine revision 4.20.0100, extends the query
facilities available in U/SQL to allow remote HTTP access to your U/SQL Server instance.

Accessed via your Internet browser, the HTTP Server is a quick and easy way to interrogate
your UDD and data.

Installation

The HTTP Server service is an optional element of the Windows U/SQL Server installation.

After entering the product password

The installation script will generate the following prompt:

Installation and Licensing

25

The U/SQL and HTTP services are installed as separate entities; after installation,
if you look in your list of services you should see two distinct service entries:

Configuration

The HTTP Server relies on two [Configuration Settings] directives in order to determine the
location of the HTTP content files and the service port. Added and set manually, the directives
have the following values and format:

HTTPPort=<port number>

and

HTTPContent=<full path to where the home.xml and usql.xsl files
reside>

These directives are set in the U/SQL Service Manager

Transoft U/SQL User Guide

26

These two directives must be set prior to starting the HTTP service.

Note: please ensure the U/SQL Server install is run-as Administrator as the home.xml and
usql.xsl files are copied to the U/SQL bin directory as part of the installation of the HTTP
Server.

Getting started with the HTTP Server

The HTTP Server is an optional start up element; when starting the U/SQL Server service you
will be presented with the following:

If you decline this option, the U/SQL HTTP Server service will not start.

You can stop the HTTP Server either via the U/SQL Service Manager (stopping the U/SQL
Server service will stop the HTTP Server) or Control Panel > Services (this gives the option
of a selective shutdown of the running U/SQL services)

Installation and Licensing

27

 Accessing your data via the HTTP Server

The HTTP server is accessed via your Internet browser. To access the service you must use
either of the following URL formats

http://machine:port

or

http://machine:port/home

No other path is valid.

When you access the service you are presented with the following display:

After entering the relevant UDD details, you can run ‘typical’ ANSI SQL statements e.g.
SELECT, UPDATE and DELETE statements.

Transoft U/SQL User Guide

28

 Diagnostic logging

In terms of activity logging, HTTP server log messages are logged into usqlcs_http.log
(located in the U/SQL bin directory).

A successful start-up and query return should produce something similar to the following:

DBG: 26/Mar/07 12:24:56 SYSTEM 3640 httpserver.c 135:

--- HTTP server[1.00.0000] started on port 7001.

DBG: 26/Mar/07 12:24:59 SYSTEM 3796 httpserver.c 149:

--- New HTTP client 232 .

DBG: 26/Mar/07 12:24:59 SYSTEM 3796 httpserver.c 239:

--- HTTP server responded 200.

DBG: 26/Mar/07 12:24:59 SYSTEM 3796 httpserver.c 165:

--- HTTP client 232 gone.

HTTP client messages are logged into usqlcs.log.

Limitations

The U/SQL HTTP Server query interface has a number of limitations, namely:

Installation and Licensing

29

� You cannot create a new UDD.

� You cannot set Multi-tier security or ‘Grant & Revoke’ security through the
web interface. You can, however, log-in to existing datasources that have been
configured to use these security options.

� Only one query can be run at one time.

Transoft U/SQL User Guide

30

Installing HTTP Server on UNIX

U/SQL HTTP Client Browser on UNIX

Introduction

Transoft’s U/SQL HTTP Server, introduced in engine revision 4.20.0100, extends the query
facilities available in U/SQL to allow remote HTTP access to your U/SQL Server instance.

Accessed via your Internet browser, the HTTP Server is a quick and easy way to interrogate
your UDD and data.

Installation

The HTTP Server executable (usqlhttp) is installed, along with associated files, by default
during the U/SQL Server installation.

To confirm installation, check in your U/SQL bin directory for the following files:

usql.xsl

home.xml

usqlhttp

The U/SQL and HTTP executables are installed as distinct entities; use of the
HTTP Server is optional.

Configuration

The HTTP Server relies on two [Configuration Settings] directives in order to determine the
location of the HTTP content files and the HTTP Server port. Added and set manually, the
directives have the following values and format:

HTTPPort=<port number>

and

HTTPContent=<full path to where the home.xml and usql.xsl files reside>

These directives are set in the usqlsd.ini situated in the U/SQL bin directory:

[Configuration Settings]
DefaultServer=sgsun3
DefaultPort=7001
HTTPPort=7002
HTTPContent=/home/proj/support/aleahy/httpserver/bin

These two directives must be set prior to starting the U/SQL Server.

Installation and Licensing

31

Getting started with the HTTP Server

The HTTP Server is an optional start up element; when starting the U/SQL Server you will be
presented with the following:

The U/SQL Server has started on port '7001'.
Start HTTPServer on the default port number 7002 (y/n):

Once started, the HTTP Server will remain in a ‘listening’ state:

The U/SQL Server has started on port '7001'.
Start HTTPServer on the default port number 7002 (y/n): y
listening on port 7002

You can decline the HTTP start-up option by simply following the prompts:

Start HTTPServer on the default port number 7002 (y/n): n

Start HTTPServer on the next available port number 7000 (y/n): n

Enter the port number on which you would like to start the HTTPServer

(or type 'x' to EXIT) : x

$

If you want to stop the HTTP Server you will need to shutdown the U/SQL Server via the
stop_serv.sh.

If you previously declined the HTTP Server start-up option, and wish to start it, you will need
to shutdown the U/SQL Server and run the start_serv.sh again.

Accessing your data via the HTTP Server

The HTTP server is accessed via your Internet browser. To access the service you must use
either of the following URL formats

http://machine:port

or

http://machine:port/home

No other path is valid.

When you access the service you are presented with the following display:

Transoft U/SQL User Guide

32

After entering the relevant UDD details, you can run ‘typical’ ANSI SQL statements e.g.
SELECT, UPDATE and DELETE statements.

Installation and Licensing

33

Diagnostic logging

In terms of activity logging, HTTP server log messages are logged in the standard usqlcs.log
(located in the U/SQL bin directory).

A successful start-up should, at log level 4, produce something similar to the following:

CON: 27/Mar/07 12:05:06 aleahy 23156 unixserv.c 342:

--- usqlsd started on port 7005.

DBG: 27/Mar/07 12:05:10 aleahy 23167 httpserver.c 135:

--- HTTP server[1.00.0000] started on port 7002.

DBG: 27/Mar/07 12:05:24 aleahy 23167 httpserver.c 149:

--- New HTTP client 5 .

Limitations

The U/SQL HTTP Server query interface has a number of limitations, namely:

� You cannot create a new UDD.

� You cannot set Multi-tier security or ‘Grant & Revoke’ security through the
web interface. You can, however, login to existing data sources that have been
configured to use these security options.

Transoft U/SQL User Guide

34

� Only one query can be run at one time.

Installation and Licensing

35

Licensing

Licensing

This section describes how to install the U/SQL Client license and the U/SQL
Server license. In addition, it describes the implications of using U/SQL with the
installed licenses and the possible error conditions.

U/SQL Revision 3, or above, requires a license on each user’s PC for both Single
and Multiple-tier, and for Multiple-tier a further license must be installed on the
server. The U/SQL Server license controls the number of concurrent users
connected. The licenses consist of License Codes supplied on a License Form by
your supplier (see sample in Appendix B).

For evaluations and emergencies, for example, where the License Form
containing your License Codes is mislaid following a disk crash, you can create
Temporary Unlicensed Copies for 30 days. This applies to both the U/SQL Clients
and the U/SQL Server.

This section covers the following topics:

�� Installing the U/SQL Client License

�� Installing the U/SQL Server License

�� Starting U/SQL with Licensing.

Transoft U/SQL User Guide

36

Installing the U/SQL Client License

If you are installing the U/SQL Client software for the first time, then the License
Tool is displayed:

It is not essential to install your license during the U/SQL Client software
installation. It can be undertaken at any time using the License Tool found in
the U/SQL Client program group. (The License instructions are only displayed
during software installation).

Also the U/SQL Client software may be used as a Temporary Unlicensed Copy for
evaluation purposes for a 30 day period, without installing any license. See the
section Creating a Temporary Unlicensed Copy.

To license the U/SQL Client you enter an unique License Code on each user’s PC
from a supplied License Form (see sample in Appendix B). This step is described
in detail in the next section.

Entering a License Code

You will have been provided with a License Form containing a set of unique
Client License Codes for the number of U/SQL Clients (that include the ODBC
Driver and the U/SQL Administrator) purchased. Refer to the Sample License
Form in Appendix B. For example, if you have ordered a four user license, there
will be four unique U/SQL Client License Codes on the License Form.

One of the unique Client License Codes is installed on each user’s PC.

From the License Tool, click the License Form button. The Install License
dialog box is displayed:

Installation and Licensing

37

Enter Your Name and Your Organization, which must be the same
Organization that is shown on the License Form, followed by one of the unique
License Codes which determines how the U/SQL Client software will operate.

Note: It is a good idea to register the name of the user of each License Code on
the License Form for future reference. This is in case the License Code needs to
be re-installed if the disk ‘crashes’ and to ensure that each code is used only
once.

A sample License Code is S43A-U4-D1-F4-1-C231500, where:

S43A The unique serial code for the license which MUST match the
serial code on the Multiple-tier U/SQL Server License Code.

U4 The total number of U/SQL Clients copies to be installed, in this
case 4.

D1 The Data Source Driver code, for example, Micro Focus COBOL.

F4 The features code, determining Single or Multiple-tier, read-only
or read write, U/SQL Administrator or Manager allowed, and so
on.

1 The copy number of this license; in this case 1 of 4 (the
maximum copies to be installed).

C231500 The checksum that check all the parts of the License Code and
that the correct Organization name is entered.

Note: The checksum can be an alphanumeric code; CA2X16GDY.

After entering Your Name, Your Organization and the License Code click
Install. If an incorrect Organization / License Code combination is entered an
error message is displayed. You can correct the entries or click Exit. If a valid
combination is entered, then the following dialog box showing the details of the
installed license is displayed:

Transoft U/SQL User Guide

38

Read the terms of the License Agreement and if you agree to them click the I
Agree button. Finally click the Close button to complete the licensing process.

Upgrading a License Code

If you have installed the U/SQL Manager, as part of the U/SQL Client software
installation, then the License Form will also include a License Upgrade Code
for it. In this case, after installing the U/SQL Client license for the ODBC Driver
and Administrator, as described in the section Entering a License Code, click the
Upgrade button on the License Tool as directed by the License Installation
Instructions.

You can also upgrade a license at any time, for example, to change from read-
only to read-write or to change an evaluation license into a full license. To change
a license, you will be supplied with a License Form containing the appropriate
License Upgrade Code.

Whether you are upgrading the license during the U/SQL Client software
installation to include the U/SQL Manager, or subsequently for any reason, then
from the License Tool click the Upgrade button. The License Code Upgrade
dialog box is displayed:

A sample Upgrade License Code is S43A-UGI-F5-1-C19599, where:

Installation and Licensing

39

S43A Same unique serial code of the original license.

UG1 The number of the upgrade code (UG). In this case it is the first
upgrade (number 1).

F5 The upgraded features code, in this case licensing the U/SQL
Manager to operate.

1 The copy number of this upgrade. You may have more that one user
to upgrade.

C19599 The checksum that checks that all parts of the License Upgrade
Code are valid. Note, the checksum can be an alphanumeric code,
for example, CB4XG3DUY.

Enter the License Upgrade Code from the License Form and click Apply. If an
incorrect upgrade code is entered an error message is displayed. You can make a
correction to install a valid code or click Close to reject the upgrade.

Creating a Temporary Unlicensed Copy

The U/SQL Client software may be operated as a Temporary Unlicensed Copy
for 30 days, in unrestricted mode, without installing a license. This applies:

�� If you remove the existing full license

�� In the event of a disk crash, when after re-installing the U/SQL Client
software, the License Form may not be immediately ‘to hand’.

You can use the License Tool at any time to install a valid license, as described
above.

If no U/SQL Client license has been installed and an ODBC-enabled product, for
example, Access, IQ or Impromptu, is invoked then the following message is
displayed:

If you click Yes to create a Temporary Unlicensed Copy, then each time an
ODBC-enabled product is invoked the following message is displayed:

Transoft U/SQL User Guide

40

After the Temporary Unlicensed Copy expires, the following message will be
displayed:

Examining and Removing the U/SQL Client License

Use the Examine option of the License Tool to review the status of the installed
license; be it a full license, a licensed copy with an expiry date or a Temporary
Unlicensed Copy.

Use the Remove option of the License Tool to delete an existing evaluation or
full license. Once a Temporary Unlicensed Copy has been created it cannot be
removed except by installing a valid license, as described above.

Installation and Licensing

41

Installing the U/SQL Server License

The U/SQL Server requires a license file to be created before it can operate. The
license contains various elements including: the maximum number of concurrent
U/SQL Client users that can connect to the server, the data source driver (say, C-
ISAM), the server platform (say, IBM AIX), and, for an evaluation, the expiry
date.

Note: Each user is allowed 3 simultaneous connections from his/her PC and they
count as ONE server user number (user #). If a user has more than 3
connections from the same PC, then a further server user number will be used.

Each UNIX Interactive U/SQL utility, usqli, connection counts as ONE server user
number.

There are two options for creating a license for the U/SQL Server to operate:

1. If you have been issued with a License Form (see the sample in Appendix
B) containing details of your U/SQL Server License Code, you will install
this code.

A typical License Code is S43A-U4-D1-P2-F4-C1GHT4FTL where:

 S43A The unique serial code for each license which MUST match
the serial code on each client PC.

 U4 The maximum concurrent number of U/SQL Client users
allowed to connect, in this case 4.

 D1 The Data Source Driver code, for example, Micro Focus
COBOL.

 P5 The server platform code, for example, HP-UX.

 F2 The features code, determining Multiple-tier, read-
only/read write and so on.

 C1GHT4FTL The checksum that check all the parts of the License Code
and that the correct Organization name is entered.

2. You can set up a 2-user Temporary License that will operate for 30 days.

Instructions for installing a U/SQL Server license for UNIX platforms and Windows
NT Server are described in the following sections:

�� Installing the Server License on UNIX Platforms

�� Installing the Server License on Windows NT Server.

Transoft U/SQL User Guide

42

Installing the Server License on UNIX Platforms

On UNIX platforms, to install a license you execute the serv_setup.sh script,
from the bin directory below the base directory of the U/SQL Server software
installation, for instance, /usr/usqls/bin. It is invoked as follows:

cd /usr/usqls/bin

./serv_setup.sh

The Main Menu is displayed:

U/SQL SERVER CONFIGURATION AND CONTROL - MAIN MENU

==

1) DATA SOURCE CONFIGURATION

2) CONFIGURATION SETTINGS
3) START SERVER
4) STOP SERVER

5) LOG FILE CONTROL
6) CREATE, VIEW & REMOVE SERVER LICENSE
7) VIEW THE ‘usqlsd.ini’ FILE

Enter '?' or '<NUMBER>?' for HELP, 'x' to EXIT.

Select option:

Select option 6, CREATE, VIEW & REMOVE SERVER LICENSE, which displays the

Product Licensing Utility menu:

Product Licensing Utility - Rev x.xx

Note: To create a Full License File you will need to have available
the License Form containing the License Code

1 - Create Full License File

2 - Create Special License File (when upgrading to Rev 3)
3 - Create Temporary 2-User License File
4 - View License File
5 - View & Remove License in Memory

6 - Exit

Select option:

Now you can either create a full license, a special license (if you have upgraded to
U/SQL Revision 3 or above) or a temporary license, as described in the sections
below.

Creating a Full License

If you have been provided with a License Form, which includes details of your
U/SQL Server License Code, then from the Product Licensing utility menu,
select 1 to Create a Full License File. The following is displayed:

Create Full License File

You must enter your Organization Name and License Code EXACTLY as
shown on your License Form.

Your Organization: ABC Company
License Code: S43A-U4-D1-P5-F2-C1GHT4FTL

Installation and Licensing

43

If the Organization name or the License Code be incorrectly entered then you will
be notified by the following message and you can either exit or re-enter the
combination again:

This is not a valid License Code, please check your License Form and
re-enter.

Enter R to retry or E to exit: R

If the Organization and License Code combination is correctly entered then the
following is displayed:

This License has the following characteristics

Product: U/SQL Adapters
Serial code: S43A
Create date: 7 Jan, 1998
Expiry date: None
Server platform: HP-UX
Features:
 Multi-tier
Data source driver(s):
 Micro Focus COBOL
Max usage counts:
 U/SQL Client Users: 4

Please confirm that you agree to abide by the terms of the License
Agreement.

I agree by these terms (Y/N): Y

If you answer ‘N’ then the following message is displayed:

The License File cannot be created without your agreement to the
License terms.

Enter R to retry or E to exit:

If you answer ‘Y’ then the following is displayed:

The default path and License File name is: /usr/usqls/bin/SERVER.LIC

Please enter:
a) the License File name (which must have a .LIC
 extension) to create it in the current directory

b) the full path and the License File name, or
c) NEWLINE to accept the displayed default

Enter:

Normally, you will simply accept the default license file name, SERVER.LIC, by
pressing the RETURN key.

The following error conditions may be encountered:

�� If a duplicate license file name exists, the following message is displayed
and you can either replace the existing license with this new one or choose
a new name as above.

A license file already exists with this pathname. Do you want to
replace it (Y/N): N

�� If you do not include a '.LIC' or '.lic' suffix with the license file you will be
presented with the following message and you are requested to re-enter
the name:

Transoft U/SQL User Guide

44

The license pathname must have a .LIC or .lic suffix and the
filename portion must not be empty.

�� If the path into which you wish to save the license file does not exist you
will be presented with the following message and you are requested to re-
enter the path:

No such directory.

If the license file is successfully created then you must set up the ‘License=’
(note spelling!) directive, to denote the path and name of the license file, in the
UNIX usqlsd.ini configuration file in the [Configuration Settings] section.

License file has been successfully created!

Do you wish to update the usqlsd.ini configuration file with this
License:
License=/usr/usqls/license/SERVER.LIC

Current setting : /usr/usqls/bin/SERVER.LIC

Enter (Y/N): Y

usqlsd.ini updated.

At this point the license installation is complete and you are returned to the
Product Licensing Utility main menu.

Note: The License= directive can also be set using the serv_setup.sh script,
and the CONFIGURATION SETTINGS option. You will be prompted to 'Enter
license file' name; enter the path and name.

Creating a Temporary 2-User License

For evaluations or in case you have mislaid your License Form, containing the
U/SQL Server full License Code, you can create a temporary 2-user license that
will operate for 30 days.

To create a temporary license select the Create Temporary 2-User License
File option from the Product Licensing Utility main menu. The following is
displayed:

Create Temporary 2-User License File

Your Organization: ABC Company

This license has the following characteristics

Product: Any
Serial code: S999999999
Create date: 7 Jan, 1998
Expiry date: 6 Feb, 1998
Server platform: Any
Max usage counts:
 Users: 2

This is a Temporary license.

Please confirm that you agree to abide by the terms of the License
Agreement.

I agree by these terms (Y/N): Y

Installation and Licensing

45

Then continue as in the section Creating a Full License to provide the license file
name.

Display a License File

You can display the contents of a License file by selecting the View License File
option from the Product Licensing Utility main menu. The following is
displayed:

You have the following License file(s) in the current directory:
SERVER.LIC
ABC.LIC

Enter the (path and) name of the License file you wish to view, or
press NEWLINE to return to the main menu:
SERVER.LIC

Organization: ABC Company Inc
License Code: S43A-U4-D1-P5-F2-C1GHT4FTL

This License has the following characteristics

Product: U/SQL Adapters
Serial code: S43A
Create date: 7 Jan, 1998
Expiry date: None
Server platform: HP-UX
Features:
 Multi-tier
Data source driver(s):
 Micro Focus COBOL
Max usage counts:
 U/SQL Client Users: 4

This is a Special or Temporary license (as appropriate)

Note: Read-Write is the default and is not explicitly shown as a feature.

View and Remove License in Memory

When the U/SQL Server is started with a license defined by the directive
License=, in the usqlsd.ini configuration file, the license is set up as a memory
table to hold the maximum number of concurrent U/SQL Client users.

You can view the contents of a license memory table by selecting the View &
Remove License in Memory option from the Product Licensing Utility. This
option also allows you to remove an individual user from the memory table if, for
example, his/her PC has ‘gone down’ and lost the connection to the U/SQL
Server. Optionally, all users have to be removed from the memory table before
the license table itself is removed from memory altogether.

Note: Great care must be exercised to ensure that ONLY users, whose PCs have
become in-operable, are removed from the license memory table. Removing a
user from a server user number removes ALL the user’s connections in that
server user number. If a user is removed with a valid current connection, then
that user will cease to operate.

Selecting the View & Remove License in Memory option from the Product
Licensing utility displays:

Transoft U/SQL User Guide

46

View & Remove License in Memory

You have the following Licenses in memory:

1) /usr/usqls/bin/SERVER.LIC
2) /usr/usqls/bin/ABC.LIC

Enter a number in the range 1 to 2 to select license: 1

License file: /usr/usqls/bin/SERVER.LIC
Organization: ABC Company Inc
License string: S43A-U4-D1-P5-F2-C1GHT4FTL

This license has the following characteristics

Product: U/SQL Adapters
Serial code: S43A
Create date: 7 Jan, 1998
Expiry date: None
Server platform: HP-UX
Features:
 Multi-tier
Data source drivers(s):
 Micro Focus COBOL
Max usage counts:
 U/SQL Client Users: 4

Do you wish to view the Active Users (Y/N)? Y

Active U/SQL Client Users:3 (max 3 connection per user#)
User# User IP User Name User's Count
1 128.1.10.13 Joe Smith 1
 Server PID(s) : 28883
2 128.1.10.20 Jim Jones 3
 Server PID(s) : 28804 28824 28851
3 128.1.10.20 Jim Jones 1
 Server PID(s) : 28943

Enter User# or 'A' for All to remove user(s), or press NEWLINE to
return to the main menu: 1

User(s)removed!

Enter User# or 'A' for All to remove user(s), or press NEWLINE to
return to the main menu:

If there are no active users then the following is displayed:

There are no Active Users!
Do you wish remove the license from memory (Y/N): Y

License removed!

Press NEWLINE to return to the main menu.

You will notice that each user is allowed 3 simultaneous connections from his/her
PC and they count as one server user number (user #). If a user, Jim Jones in
the example above, have more than 3 connections from the same PC, then a
further user # will be used.

Installation and Licensing

47

Installing the Server License on Windows NT Server

On Windows NT Server, the U/SQL Server license is installed via the U/SQL
Service Manager utility contained in the U/SQL program group. Run the program
and from the main property sheet, select your service, for example,
USQLSDMF3.20.0000. Click the License Manager tab. The License Manager
property page is displayed:

From the Create License section you have the option of creating a Full,
Temporary or Special license.

Creating a Full License

If you have been provided with a License Form which includes details of your
U/SQL Server License Code, select the Full option to create a Full license and
then click the Create button. The Create Full License dialog box is displayed:

Enter Your Organization and Your License Code EXACTLY as shown on your
License Form. The default License Name of SERVER.LIC can be changed, but it
must have a '.LIC' extension. Then click the Create License button.

Note: The checksum can be an alphanumeric code, for example, C1GHT4FTL.

Transoft U/SQL User Guide

48

If an incorrect Organization/ License Code combination is entered an error
message is displayed. You can make a correction to install a valid combination or
click Cancel. Assuming a valid combination is entered, then the following dialog
box is displayed:

If you agree to abide by the terms of the License Agreement then click the I
Agree button. The License Manager is displayed showing the new license:

To activate a license you highlight any License Name and click the Activate
button. Usually you will only have one license.

By making a license active you are automatically setting up the License directive
in the Registry as the License Name, for example:

License=SERVER.LIC

Creating a Temporary 2-User License

Installation and Licensing

49

For evaluations or if you have mislaid your License Form, containing the U/SQL
Server full License Code, you can create a temporary 2-user license that will
operate for 30 days.

To create a temporary license, select the Create License\Temporary option
from the License Manager property page of the U/SQL Service Manager, and
click the Create button. The Create Temporary License dialog box is
displayed:

Enter Your Organization name and, if necessary, change the default License
Name of SERVER.LIC. Then continue, as described in the Creating a Full License
section above, by agreeing to the License Agreement before activating the
license.

Display a License

You can display the contents of any license by highlighting the required License
Name and clicking the Display button on the License Manager property page
of the U/SQL Service Manager. A form showing the License Details is displayed:

Note: Read-Write is the default and is not explicitly shown as a feature.

Transoft U/SQL User Guide

50

Also, the License code checksum can be an alphanumeric code, for example,
C1GHT4FTL.

View & Remove License in Memory

When the U/SQL Server is started with a particular license, defined by the
License= directive, in the Registry, the license is set up as a memory table to
hold the maximum number of concurrent U/SQL Client users that have been
licensed.

You can view the contents of a license memory table by selecting the Active
License tab on the U/SQL Service Manager. The Active License property page is
displayed:

This option also allows you to remove an individual user from the memory table
if, for example, his/her PC has ‘crashed’ and lost the connection to the U/SQL
Server. Highlight the user to be removed and click the Remove User button.

Note: Great care must be exercised to ensure that ONLY users, whose PCs have
become in-operable, are removed from the license memory table. Removing a
user from a server user number (user #) removes ALL the user’s connections in
that user #. If a user is removed with a valid current connection, then that user
will cease to operate.

Each user is allowed 3 simultaneous connections from his/her PC and they count
as one server user number (user #). If a user has more than 3 connections from
the same PC, then a further user # will be used.

To remove an active license memory table the U/SQL Server must first be
stopped from the Server Control property page of the U/SQL Service Manager.
If there are no active users then on the Active License form you will be presented
with a Reset License Table button, which when clicked will clear the memory
table for the license.

Installation and Licensing

51

Starting U/SQL with Licensing

After you have installed your U/SQL Client and, for Multiple-tier, U/SQL Server
software and licenses as described in the sections above, you can start to use
U/SQL. The following section describe points to be careful of, possible error
conditions that may occur, the reasons for them and the remedies.

Starting the U/SQL Server with the License File

For Multiple-tier versions of U/SQL, you will have created a U/SQL Server license
file, as described in the section Installing the U/SQL Server License above, as
either a full license, a special license (if you are upgrading your U/SQL software
from a revision prior to Revision 3 and you are continuing to use the existing
client token licensing) or as a temporary 2-user license.

Ensure that the path and name of your license file are defined correctly by the
U/SQL Server License= directive (note spelling!), in the UNIX usqlsd.ini
configuration file or Windows NT Server Registry, in the [Configuration
Settings] section, otherwise the U/SQL Server will not find the license file when
starting.

Example entries on UNIX and Windows NT Server are:

License=/usr/usql/bin/NEWLIC.LIC UNIX

License=NEWLIC.LIC Windows NT

When you start the U/SQL Server, either on a UNIX or Windows NT Server
platform the U/SQL Server will attempt to set up the license memory table
defined by the License= directive.

The U/SQL Server may fail to start, for example under UNIX, as follows:

U/SQL Server [Engine 3.00.0000]
Copyright © Transoft Ltd 1994-98

Server has not started due to:
Unable to access license file: NEWLIC.LIC

Server stopped.

Possible error conditions that may be encountered are:

�� (E3000) Unable to access .ini file: usqlsd.ini

For UNIX installations, ensure that the usqlsd.ini configuration file is in the
same directory where the U/SQL Server is started, usually
/usr/usqls/bin.

�� (E3001) Unable to find directive (License=)

Ensure that this directive is set up in the UNIX usqlsd.ini file or the
Windows NT Server Registry.

�� (E3002) Unable to access license file: <license.lic_file>

Transoft U/SQL User Guide

52

Ensure the license path and file name agree with the License= directive in
the UNIX usqlsd.ini file or the Windows NT Server Registry.

�� (E3003) Unable to locate any license files in current
directory: <path>

Ensure that either the license file is in the current directory where the
U/SQL Server is started, or the license path and file name agree with the
License= directive in the UNIX usqlsd.ini file or the Windows NT Server
Registry.

�� (E3004) <license.lic_file> is not a valid license file

Either ensure the license path and file name agree with the License=
directive in the UNIX usqlsd.ini file or the Windows NT Server Registry, or
re-create the license file, as it may have become corrupt.

�� (E3005) File <license.lic_file> contains an invalid license
code

Either ensure the license path and file name agree with the License=
directive in the UNIX usqlsd.ini file or the Windows NT Server Registry, or
re-create the license file, as it may have become corrupt.

�� (E3006) License file <license.lic_file> contains an expired
license code

Either create a temporary 2-user license or contact your supplier to obtain a
full license.

�� (E3007) License file <license.lic_file> does not apply to the
current platform

You have installed a license that cannot be used with the current platform.
Either create a temporary 2-user license or contact your supplier to obtain a
license with the correct platform.

�� (E3008) License file <license.lic_file> does not apply to this
product

This is not a license for U/SQL. Either create a temporary 2-user license or
contact your supplier to obtain a license with the correct platform.

�� (E3016) Incompatible Licensing module! Contact your supplier.

You have incompatible U/SQL Server software, contact your supplier.

Assuming the U/SQL Server finds the license file and it is valid then, after
displaying the license details, it will start.

Starting the U/SQL Client with Licensing

The U/SQL Client software operates with the client license. If no license is
present, the existing license is found to be corrupt or a non-temporary unlicensed
copy has expired, then you will be offered the following choices:

Installation and Licensing

53

You then make your choice. Refer to the section Installing the U/SQL Client
License for details of the various options.

For Multiple-tier, once the U/SQL Client has verified the client license as valid, it
will attempt to connect to the U/SQL Server. If it does not connect successfully it
may be due to one of the following conditions:

�� Incompatible Client and Server Licensing!

Client software Serial Code: S12345A. Server software Serial Code: S1111A

Either:

1. Install compatible Licenses on Client and Server.

2. Use the License Tool on the Client Software to create a Temporary
Unlicensed Copy that will operate for 30 days.

3. Contact your supplier to obtain a full license.

�� Incompatible Temporary Server License!

Either more than one Data Source or an RDBMS Data Source included in
Server software.

DSD(s) in Server: ACUCOBOL, C-ISAM

Contact your supplier to obtain a full license.

A temporary 2-user U/SQL Server license will only work with a single data
source driver and no RDBMS data sources.

�� Server License Expired!

Server License Serial Code: S99999A. Expiry date: DD-MMM-YYYY

Either:

o Create a 30 day 2-user Temporary License for the Server

o Contact your supplier to obtain a full license.

�� Server License - incompatible Data Source(s)!

In Server: ACUCOBOL. In License: Micro Focus. Server License Serial
Code: S12345A

Transoft U/SQL User Guide

54

Contact your supplier to obtain a full license.

In the meanwhile you can create a temporary 2-user license.

�� Licensing Problem!

<Error message>

Contact your supplier.

Where <Error message> may be one of the following:

o (E3015) Duplicate client license detected

The same U/SQL Client License Code has been installed on more than ONE
PC and is trying to connect. Install a unique license code on each PC.

o (E3011) The maximum licensed user count has been reached

You are at the limit of your concurrent Server license connections. Obtain
an increased connection count license from your supplier.

o (E3012) The license has expired

Either create a temporary 2-user U/SQL Server license or contact your
supplier to obtain a full license.

o (E3013) Warning: <days> days remain on this license

This U/SQL Server license will expired in <days>.

o (E3009) Invalid license key

The license the U/SQL Server originally connected to is no longer present. It
may have been removed by using the serv_setup.sh script. This will
happen on starting an U/SQL Client.

o E3010 Invalid user type code

An invalid client user type has attempted to connect.

o E3014 Unknown user ID

This error message will appear, in the usqlcs.log file, if a user is removed
from the license memory using serv_setup.sh when he/she is still
connected. No error can be returned to the client.

55

Unattended Client installation

Unattended Client installation

Introduction

This document describes the necessary steps required to install the U/SQL Client
application in an “unattended” or “silent” mode, suitable for rolling out to multiple
client machines automatically. An unattended install prompts for no user
interaction, the decisions required to perform the installation process having
previously been specified in a response file.

How to perform Unattended (Silent) installations

Initial setup

Copy the contents of the <cdrom>\32bit\Disc1 directory to a directory on a share
on the file server machine from which you will be using the unattended
installation, for instance \\SVRNAME\SHARENAME\USQLINST.

Note: This document uses the shorthand “USQLINST” to refer to the nominal
"\\SVRNAME\SHARENAME\USQLINST” path.

Generating a response file - Overview

A response file is a text file that is generated from user interaction when running
a setup program. A response file contains details of the buttons pressed, the
options changed and the text typed in the setup process.

When creating a response file, you cannot specify it’s location or name, it will
always be created in the %WINROOT% folder (eg “C:\WINDOWS” or similar), and
will always be called “SETUP.ISS”.

Response files can be generated by running the setup program in “Record” mode
and installing the software on a reference machine, choosing the setup options
you will later use for the other client workstations.

This response file can then be used to rollout the application on multiple
machines so that the Setup program does not prompt for user interaction, but
instead selects options from the response file.

Example response files have been included in the
<cdrom>\32bit\Disc1\UNATTEND directory, and can be viewed using any text
viewer or editor.

The example files are:

File name Description

COMPACT.ISS
“Compact” setup type chosen, “Multi-tier ODBC
Client” password entered, default paths and options
accepted throughout the rest of the installation

Transoft U/SQL User Guide

56

process.

TYPICAL.ISS

“Typical” setup type chosen, “Multi-tier ODBC
Client” password entered, default paths and options
accepted throughout the rest of the installation
process.

Generating a response file – Steps

To generate a response file:

1. From the “UNATTEND” directory within the USQLINST directory, run
GenResp.bat. This will start the setup.exe program in “Record mode”, ready
to record the desired user input.

2. Input responses to the install program’s prompts as you would want
them to be answered on other client machines.

3. The setup program will record the actions you take performing the setup
process in a “response file”.

4. When the install process is complete, move the generated response file
(SETUP.ISS) from the %windir% directory, (often C:\WINDOWS or
C:\WINNT), to a location like USQLINST\UNATTEND.

You can then rename the response file, or modify it with a text editor if required.

Licencing

The U/SQL application has specific licencing requirements, and the interactive
client installation displays the client licence manager so that the user can input
licence details by hand.

For the unattended installation, the licence information can instead be specified in
the SETUP.INI file in the main USQLINST directory.

To do this:

1. Open the SETUP.INI file in the main USQLINST directory using a text
editor

The file will look something like this:

[Startup]

AppName=U/SQL Client Installation

FreeDiskSpace=684

[Registry]

UKSupportEmail=UKSupport@transoft.com

USSupportEmail=USSupport@transoft.com

[Configuration]

Options=51

Features=6

2. Add a new section to the bottom of the SETUP.INI file, the section should
look like this:

Unattended Client installation

57

[Licence]

Key=XXXXX-XX-XXX-X-XXXXXXXXX

Name=YourNameHere

Organisation=YourOrganisationHere

Where:

“Key” is the licence key you would usually use when installing client
machines

“YourNameHere” is the Name as you would enter it into the licence
manager.

“YourOrganisationHere” is the Organisation as you would enter it into
the licence manager.

3. Save the SETUP.INI file and exit.

The silent installation process will not fail if a licence is not specified in the
SETUP.INI file.

If a client is installed with a licence specified in the SETUP.INI file, you can do one
of two things:

1. Enter the licencing information into the SETUP.INI and run the silent
setup process again.

2. Enter the licence key by hand using the Client Licence Manager.

Running an unattended installation

Once a response file has been generated, an unattended installation can be run
on the target workstations:

“Silenttypical.bat” and “Silentcompact.bat” are examples of batch files used to
run unattended installations are included in the UNATTEND directory within the
main USQLINST directory.

The “Silenttypical.bat” file looks like this:

..\setup -s -f1.\typical.iss -f2.\USQLtypical.log

This runs the setup.exe program from the USQLINST directory, using the
“typical.iss” response file, and generates a log file called “USQLtypical.log”.

The batch files provided are only an example, and should be copied and modified
as required.

Checking the Installation log file

If a silent installation is suspected to have completed abnormally, you should
check the installation log file. If the installation was started from the
“Silenttypical.bat” or “Silentcompact.bat” example batch files, the installation log
file will be called “USQLtypical.log” or “USQLcompact.log” respectively, and is
created in the “UNATTEND” directory by default.

On successful completion of an installation, the log file will look something like
this:

[InstallShield Silent]

Version=v7.00

Transoft U/SQL User Guide

58

File=Log File

[ResponseResult]

ResultCode=0

“ResultCode=0” indicates that the install process finished successfully.

If the ResultCode is NOT 0, then the installation has failed, - check Appendix A
(“InstallShield Common Errors”) for more information.

Note: Installing the U/SQL Client requires Administrative rights on the
client workstation.

Note: Attempting to install the U/SQL Client in Silent Mode without
Administrative rights will fail, often with a result code of “-1” or “-11”.

Unattended Client installation

59

InstallShield - Common error codes

Common InstallShield errors that may be seen on the ResultCode line of the
“.LOG” file generated when running the unattended (silent) installation.

Result
Code

Description

0 Install completed successfully (Not an error).

-1 General error

-2 Invalid mode

-3 Required data not found in the Setup.iss file. (The response file
is not correct for the installation being performed).

-4 Not enough memory available.

-5 File does not exist.

-6 Cannot write to the response file.

-7 Cannot write to the log file.

-8 Invalid path to the InstallShield Silent response file.

-9 Not a valid list type (string or number).

-10 Data type is invalid.

-11 Unknown error during setup.

-12 Dialog boxes are out of order.

-51 Cannot create the specified folder.

-52 Cannot access the specified file or folder.

-53 Invalid option selected.

-5001 Generic error

-5002 Failed reading media header

-5003 Failed installing kernel

-5004 Failed starting kernel

-5005 Failed opening CAB

-5006 Failed installing support

-5007 Failed setting text substitution

Transoft U/SQL User Guide

60

-5008 Failed initializing setup info

-5009 Failed getting setup driver

-5010 Failed initializing properties

-5011 Failed running setup driver

-5012 Failed uninstalling support

-5013 Failed to extract file from setup boot file

-5014 Failed to download file [occurs only when saving setup files
during an Internet setup]

-6001 Failed starting the setup launcher

-6002 Failed finding the setup launcher

-6003 Failed loading the setup launcher

-6004 Failed verifying the signature of setup launcher

-6005 Failed installing the setup launcher to proper location

-6006 Failed extracting setup launcher

61

Configure and Use

ODBC Overview

ODBC Overview

Microsoft's Open DataBase Connectivity (ODBC) standard is the most popular
means for connecting Windows products and applications to relational database
servers. Using Transoft's U/SQL product, you can connect ODBC Windows
products, such as Microsoft Visual Basic, Microsoft Access, and Powersoft
PowerBuilder, to your non-relational files, allowing you to both report on and
update the data.

ODBC Components

The ODBC architecture has four components:

�� Application - Performs processing and calls ODBC functions to submit
SQL statements and retrieve results.

�� Driver Manager - Loads drivers on behalf of an application.

�� Driver - Processes ODBC function calls, submits SQL requests to a specific
data source, and returns results to the application. If necessary, the driver
modifies an application's request so that the request confirms to syntax
supported by the associated DBMS.

�� Data source - Consists of the data the user wants to access and its
associated operating system, DBMS, and network platform (if any) used to
access the DBMS.

The Driver Manager and driver appear to an application as one unit that
processes ODBC function calls. The following diagram shows the relationship
between the four components:

Transoft U/SQL User Guide

62

U/SQL is available in two models:

�� Single-tier

�� Multiple-tier.

The Single-tier model of U/SQL

In a single-tier implementation, the database file is processed directly by the
driver. The driver processes SQL statements and retrieves information from the
database. A driver that manipulates an Xbase file is an example of a single-tier
implementation.

The diagram below shows two types of Single-tier configurations.

Configure and Use

63

In the Single-tier model of U/SQL, both the Client and Server elements of the
system reside on the same platform, for example, a Windows PC.

The Multiple-tier model of U/SQL

In a Multiple-tier configuration, the driver sends SQL requests to a server that
processes SQL requests.

Although the entire installation may reside on a single system, it is more often
divided across platforms. The application, driver, and Driver Manager reside on
one system, called the client. The database and software that control access to
the database typically reside on another system, called the server.

Another type of Multiple-tier configuration is a gateway architecture. The driver
passes SQL requests to a gateway process, which in turn sends requests to the
data source.

The following diagram shows three types of Multiple-tier configurations. From an
application's perspective, all three configurations are identical.

Transoft U/SQL User Guide

64

In the Multiple-tier model of U/SQL, the U/SQL ODBC driver resides on the Client
platform, which is connected via a LAN to the Server platform, where the U/SQL
Server and data source driver reside. For example, your Client platform could be
a Windows PC and your Server platform a UNIX or Windows NT machine.

Configure and Use

65

ODBC Compliance

The Microsoft Open Database Connectivity (ODBC) standard defines two areas of
conformance:

�� ODBC API, which specifies the functions that are supported

�� ODBC SQL Grammar and ODBC SQL Data Types.

In order for a supplier to claim that their driver conforms to a given API or SQL
conformance level, it must support all the functionality in that conformance level.
By convention ODBC aware products are classified using the following ODBC API
conformance levels:

�� Core

�� Level 1

�� Level 2

Each of these levels specifies an additional set of functionality to the previous
level. This section sets out the requirements of each of the levels, and specifies
how the U/SQL product conforms to them.

A middleware driver must at minimum conform to the requirements of the Core
level for it to be considered as ODBC compliant. Although an application may
have the capability of using specific functionality which a given driver does not
support, it will not use that feature with the given driver. A driver can implement
additional functionality to that required for conformance to a given level. An
ODBC-enabled application can determine the functionality supported by a driver
by using the ODBC calls, SQLGetInfo, SQLGetFunctions and
SQLGetTypeInfo.

This section covers the following topics:

�� ODBC API conformance

�� SQL conformance

�� API coverage

�� SQL grammar coverage

ODBC API conformance

API Conformance is classified at three levels:

�� Core API

�� Level 1 API

�� Level 2 API

It is recommended that drivers must support all the Level 1 API features.

SQL conformance

SQL Conformance is also classified at three levels:

�� Minimum SQL Grammar

�� Core SQL Grammar

�� Extended SQL Grammar

Transoft U/SQL User Guide

66

Core SQL Grammar corresponds roughly to the X/Open and SAG SQL CAE
specification (1992).

Transoft U/SQL is conformant with ODBC Revision 2 (with Revision 3 support for
System Data Source Names), and complies with the ODBC API and SQL Grammar
specified in the following tables:

API coverage

Function Level U/SQL Notes

(see below)

SQLAllocConnect Core YES

SQLAllocEnv Core YES

SQLAllocStmt Core YES

SQLBindCol Core YES

SQLBindParameter Level 1 PARTIAL 1.

SQLBrowseConnect Level 2 NO

SQLCancel Core PARTIAL 2.

SQLColAttributes Core 3.

SQLColumnPrivileges Level 2 NO

SQLColumns Level 1 PARTIAL 4.

SQLConnect Core YES

SQLDataSources Level 2

SQLDescribeCol Core YES

SQLDescribeParam NO

SQLDisconnect Core YES

SQLDriverConnect Level 1 YES

SQLDrivers Level 2 DM

SQLError Core YES

SQLExecDirect Core YES

SQLExecute Core YES

SQLExtendedFetch Level 2 NO 5.

Configure and Use

67

SQLFetch Core YES

SQLForeignKeys Level 2 NO

SQLFreeConnect Core YES

SQLFreeEnv Core YES

SQLFreeStmt Core

SQLGetConnectOption Level 1 YES

SQLGetCursorName Core YES

SQLGetData Level 1 YES

SQLGetFunctions Level 1 DM

SQLGetInfo Level 1 YES

SQLGetStmtOption Level 1 YES

SQLGetTypeInfo Level 1 YES

SQLMoreResults Level 2 NO

SQLNativeSql Level 2 NO

SQLNumParams Level 2 YES

SQLNumResultCols Core

SQLParamData Level 1 YES

SQLParamOptions Level 2 NO

SQLPrepare Core YES

SQLPrimaryKeys Level 2 NO

SQLProcedureColumns Level 2 NO

SQLProcedures Level 2 NO

SQLPutData Level 1 YES

SQLRowCount Core YES

SQLSetConnectOption Level 1 YES

SQLSetCursorName Core YES

SQLSetParam Deprecated YES

SQLSetPos Level 2 NO

SQLSetScrollOptions Level 2 NO

Transoft U/SQL User Guide

68

SQLSetStmtOption Level 1 YES

SQLSpecialColumns Level 1 YES

SQLStatistics Level 1 YES

SQLTablePrivileges Level 2 NO

SQLTables Level 1 YES

SQLTransact Core YES

(DM = provided by the Driver Manager)

Notes:

1. SQLBindParameter supersedes SQLSetParam and includes support for
INPUT/OUTPUT parameters as found in Stored Procedures which is not yet
supported.

2. SQLCancel does not interrupt a currently-preparing query unless
asynchronous execution is activated. For information on this contact
Transoft.

3. Some additional attributes have been added in ODBC 2 which are not yet
supported. An example is Column Label, which is used by report writers to
give columns different printed names.

4. 'Qualified Table Names' are not generally supported.

5. Only single-row result sets are supported.

SQL grammar coverage

Statement / Element Level U/SQL Notes

(see below)

ALTER TABLE Core PARTIAL 1.

ALTER TABLE DROP Extended NO

CREATE INDEX Core PARTIAL 2.

CREATE TABLE Minimum PARTIAL 3.

CREATE VIEW Core YES

DELETE WHERE
CURRENT

Extended YES

DELETE Minimum YES

DROP INDEX Core PARTIAL 3.

DROP TABLE Minimum PARTIAL 3.

Configure and Use

69

DROP VIEW Core YES

GRANT Core NO

INSERT INTO VALUES Minimum YES

INSERT INTO SELECT Core YES

ODBC Procedure
Extension

Extended PARTIAL

REVOKE Core NO

SELECT Minimum YES

SELECT .. GROUP Core YES

SELECT .. UNION Extended YES

SELECT .. FOR
UPDATE

Extended YES

statement ; statement
; .. etc ..

Extended NO

UPDATE .. WHERE
CURRENT

Extended YES

UPDATE Minimum YES

AVG, MAX, MIN, SUM Core YES

scientific notation
nnE+mm

Core NO

FLOAT, DOUBLE
PRECISION, REAL

Core YES

qualified objects Core NO

BETWEEN Core YES

binary-literal Extended NO

BINARY, VARBINARY Extended NO

bit-literal Extended NO

BIT Extended NO

NOT, AND, OR Minimum YES

CHAR, VARCHAR Minimum YES

LONG VARCHAR Minimum NO

Comparison Predicate Minimum YES

Transoft U/SQL User Guide

70

DATE Extended YES

AVG, COUNT,
..(DISTINCT)

Core YES

Dynamic Parameter
(?)

Minimum YES

DECIMAL, NUMERIC,
INTEGER

Core YES

BIGINT Extended NO

EXISTS Predicate Core YES

IN Predicate Core YES

LIKE Predicate Core YES

LIKE Predicate with
ODBC escape

Extended YES

ODBC Date Literal Extended YES

NULL Predicate Minimum YES

ODBC Time Literal Extended YES

ODBC Timestamp
literal

Extended YES

ORDER BY Minimum YES

ODBC Outer Join Extended YES

ODBC Scalar Functions Extended YES

quantified predicate Core YES

AS alias Core YES

TIME, TIMESTAMP Extended YES

Notes:

1. Applies only to UDD tables.

2. Applies only to UDD tables. Does not build an index for a table already
containing data rows.

3. Applies only to UDD.

Configure and Use

71

System and User Data Sources

If Microsoft's ODBC Driver Manager 3.0 or later is detected on your PC, then a
System DSN tab in addition to a (User) Data Sources tab are included on your
U/SQL Administrator property sheet, otherwise only a single Data Sources tab is
provided.

Some newer 32-bit applications look for System Data Sources (requiring
Microsoft's ODBC Driver Manager 3.0 or later to be installed) rather than User
Data Sources. In general, if a System data source has been setup any 32-bit
application used by any user should be able to use this data source. However,
you may need to set up both System and User Data Sources for differing ODBC-
enabled applications you are running.

A System Data Source is separately set up and configured in exactly the same
way as a User Data Source.

Transoft U/SQL User Guide

72

File Data Sources

U/SQL 3.10.400 and above provide support for File DSNs. A File DSN is an ODBC
File data source that stores connection information for a database in a text file
with a '.dsn' extension. The connection information consists of parameters and
corresponding values that the ODBC Driver Manager uses to establish a
connection. File DSNs allow you to connect to a data provider, and can be shared
by users who have the same drivers installed.

File DSNs can be created and maintained using:

�� U/SQL Manager

�� U/SQL Administrator

�� Win U/SQLi.

U/SQL Manager

Click on the New Data Dictionary button and the Create New Dictionary
dialog box is displayed:

This dialog box contains the following options:

User Data
Source

The User Data Source option is selected by default. This
creates a data source, which is specific to your machine, and
visible only to you.

System Data
Source

Selecting the System Data Source option creates a data
source, which is specific to your machine, and usable by any
user who logs onto your machine.

File Data
Source

Selecting the File Data Source option creates a data
source, which is independent of your machine.

To create a File DSN, select the File Data Source option. The Create New File
Data Source dialog box is displayed:

Configure and Use

73

Enter the name of the File DSN you want to create (you do not need to include
the '.dsn' extension as this will be added automatically), and select the Create
new Data Dictionary option. Click Next and follow the instructions to create the
File DSN. It will be created in the default Microsoft directory for File DSNs.

To create a new File DSN using an existing data dictionary, enter the name of the
File DSN you want to create, and select the Attach an existing Data Dictionary
option. Click Next. Enter the details of your existing data dictionary and follow
the instructions to create the File DSN. It will be created in the default Microsoft
directory for File DSNs.

U/SQL Administrator

Run the U/SQL Administrator and click the File DSN tab. The File DSN property
page is displayed:

This property page allows you to:

Add a new File DSN

Transoft U/SQL User Guide

74

Click Add. The Create New File Data Source dialog box is displayed:

Enter the name of the File DSN you want to create (you do not need to include
the '.dsn' extension as this will be added automatically), and click Next. The
following dialog box is displayed:

Select the Remote Data Source option if you are using the Multiple-iier version
of U/SQL .

Select the Local Data Source option if you are using the Single-tier version of
U/SQL.

Follow the on-screen instructions to create the File DSN.

Remove a File DSN

Select the File DSN you want to delete and click Remove. You will be asked to
confirm that you want to delete the specified file. Click Yes to delete the file.

Note: This does not delete the data dictionary.

Configure a File DSN

Select the File DSN you want to configure and click Configure. The 32-bit ODBC
Setup dialog box is displayed allowing you to configure the File DSN.

Test a connection to the File DSN

Select the File DSN you want to test and click Test Connect.

Win U/SQLi

Configure and Use

75

Run the Win U/SQLi utility and select the New UDD command from the File
menu. The Create New Dictionary dialog box is displayed:

This dialog box contains the following options:

User Data
Source

The User Data Source option is selected by default. This
creates a data source, which is specific to your machine, and
visible only to you.

System Data
Source

Selecting the System Data Source option creates a data
source, which is specific to your machine, and usable by any
user who logs onto your machine.

File Data
Source

Selecting the File Data Source option creates a data
source, which is independent of your machine.

To create a File DSN select the File Data Source option. The Create New File
Data Source dialog box is displayed:

To create a new File DSN, enter the name of the File DSN you want to create
(you do not need to include the '.dsn' extension as this will be added
automatically), and select the Create new Data Dictionary option. Click Next
and follow the instructions to create the File DSN. It will be created in the default
Microsoft directory for File DSNs.

Transoft U/SQL User Guide

76

To create a new File DSN using an existing data dictionary, enter the name of the
File DSN you want to create, and select the Attach an existing Data Dictionary
option. Click Next. Enter the details of your existing data dictionary and follow
the instructions to create the File DSN. It will be created in the default Microsoft
directory for File DSNs.

Configure and Use

77

Single-tier Administration

Installed Files

When you install Single-tier U/SQL the installation setup program performs the
following tasks:

�� It checks that you have the Microsoft ODBC Driver Manager installed (as a
minimum version 2.5, ODBC32.DLL) in the \WINDOWS\SYSTEM
directory. If you do not have this, the setup program will install it.

�� It installs the U/SQL ODBC Driver (TSENG32.DLL), and the other U/SQL
Server DLL's (for ACUCOBOL, TSACU32.DLL; for Micro Focus COBOL,
TSMF32.DLL) in the \WINDOWS\SYSTEM directory.

�� It installs the U/SQL Administrator, which is used to set up the
ODBC.INI directive entries which are described later in this section.

�� If ordered, it installs the U/SQL Manager which is used to create, view,
amend or delete the UDD for COBOL data sources. It can also be used to
set up the ODBC.INI directive entries.

�� Optionally, it installs a demonstration application, written in Microsoft
Visual Basic, for a Books Wholesaler. This demonstration shows examples
of various queries, graphics and OLE to Microsoft Excel spreadsheets. The
Visual Basic source is provided to help you review the application. The
sample data files and corresponding UDD are included so that the
application can be run.

For the Books demonstration, it edits the ODBC.INI Registry entries to add
a section for the BOOKSW32.UDD data source and dictionary.

�� Optionally, it installs the interactive U/SQL utility, Win USQLi, that allows
sample queries to be made, provides export/import functions for UDDs
and allows you to query the message log file. This is a simple ODBC-
enabled product that you can use to query the Books Demonstration data
or your own application tables.

�� It installs the License Tool that is used to install and examine the License.

�� It creates a set of U/SQL Client icons in the appropriate Windows program
group.

At this point, the installation of the Single-tier U/SQL software is complete.

Transoft U/SQL User Guide

78

U/SQL Administrator

For non-COBOL Single-tier versions, or where you have already created a UDD,
further ODBC entries can be set-up using the U/SQL Administrator.

Invoke the U/SQL Administrator. The U/SQL Administrator property sheet is
displayed:

Ensure, for Single-tier, that you select Local Data Sources. These options are
only displayed if you have both Single and Multiple-tier U/SQL ODBC Drivers on
your PC.

Configure and Use

79

Entering the ODBC.INI Directives

From the U/SQL Administrator property sheet, click Add. The 32-bit ODBC
Windows Setup dialog box is displayed:

You then make the entries shown, as described in the section ODBC.INI
Directives:

�� Data Source Name: This is only entered here when using the
Administrator, for example booksw32.udd. The '.udd' extension is NOT
mandatory for the Single-tier version.

�� Description of the Data Source.

�� Data Source Type: Usually there will be only one, otherwise make your
selection.

�� Read Only: Select this check box if this option is required.

�� Open Exclusive (for data files): Select this check box if this option is
required. This is only applicable to Micro Focus COBOL to improve
performance.

Note: You must ensure that when creating or modifying a UDD using the
U/SQL Manager that OpenExclusive is not set.

�� Data Dictionary Path and File name: The path defaults to the directory
where U/SQL Adapters was installed and the dictionary name to the Data
Source Name, with a '.udd' extension automatically added. You can
change this by clicking the Path... button to display a browser to change
the path and UDD name.

Note: As this is a dictionary name, not a data source name, the '.udd' extension
is mandatory.

These are the minimum ODBC.INI entries that are automatically added to the
Registry when you click OK. Additional entries can be made as follows:

�� Advanced entries. Click Advanced... . The Set Advanced Options
dialog box is displayed:

Transoft U/SQL User Guide

80

You can select any of the options under Type which then displays any
existing Value in the lower edit box allowing you to amend it or make a
new entry. After changing an entry, click Apply and a (*) appears
alongside the Type description, indicating a change has been made. When
all changes have been applied, click OK.

To remove a certain directives, highlight it and click Remove.

To include directives not shown under Type click New. The Add New
ODBC Directives dialog box is displayed:

Enter the new Directive Name and Directive Value and click OK. For
details on valid entries refer to the ODBC.INI Directives section. You also
can define the directive location, either in the [Transoft U/SQL
Configuration] section or in the particular data source
[<Data_source_name>] section.

�� Translator entries. ODBC translators can be added to modify the data
from the Driver, that is the client, to the Data Source and from the Data
Source to the Driver.

Click the Translator... button in the ODBC Windows Setup dialog box.
The Select Translator dialog box is displayed:

Configure and Use

81

To select an ODBC translator from those installed on your PC, either
double-click the required translator or highlight the one required and click
OK.

If you click on the Transoft Translator, then after returning to the ODBC
Setup dialog box you will find a browse button in the Translator section,
which you can use to select the translation table you want to use. See the
section Foreign Character Set Support.

Local Server Defaults

In the U/SQL Manager for COBOL data sources, select the Local Server
Defaults command from the Connection Options menu. The Local Server
Defaults dialog box is displayed:

These entries create the [Transoft U/SQL Configuration] section in the ODBC.INI
Registry. Click the New Dictionary or Log File buttons to assist in establishing
the appropriate directories.

Transoft U/SQL User Guide

82

Multiple-tier Administration (Windows)

U/SQL Server Installation on Windows

U/SQL Directories and Files

The following directories and files are relative to the base directory of your U/SQL
Server software installation, which by default is C:\USQLCS:

Directory
(relative to
U/SQL base)

File Function

<base>

C:\USQLCS

(By default)

RELEASE.WRI Release notice.

USQLSD32.EXE U/SQL Server.

TSMENG32.DLL U/SQL Engine DLL.

TSM*32.DLL Data Source Driver DLL. For example,
for Micro Focus COBOL it is
TSMMF32.DLL.

USQLSM.EXE U/SQL Service Manager.

WIN32RAP.DLL U/SQL Service Manager ancillary
functions DLL.

CLIPING.EXE A diagnostic program which allows your
TCP/IP connection to be tested. This is
only used if your PC application appears
to have failed to connect. It is used with
the TestNet utility on your Windows
PC. See the Troubleshooting section.

USQLCS.MSG The U/SQL Server error messages file.

TSTRANNT.DLL DLL providing language translation
functions.

*.TRN Foreign character set conversion files.
See the section Foreign Character Set
Support.

\BIN

TSTRANS.DAT Skeleton translation table file.

CUSTOMER etc Books Wholesaler data files. \BOOKDEMO

BOOKS.UFD UFD import file to create the
BOOKS.UDD.

\UDD Directory where UDDs will be created, by default.

Configure and Use

83

 BOOKS.UDD The dictionary (UDD) for the Books
Wholesaler demonstration.

Transoft U/SQL User Guide

84

U/SQL Service Manager

For Windows NT Server and Windows 2000, the 32-bit ODBC.INI entries are
stored in the Windows Registry. The U/SQL Service Manager utility is used to
set up and amend the Section Names and directives.

Note: It is recommended that you don not use the Registry editor, regedt32, to
add or modify entries as it is possible to make mistakes; use the U/SQL Service
Manager instead.

The U/SQL Service Manager utility allows you to:

�� Start the U/SQL Server as a Windows NT Server or Windows 2000 Service
and make this automatic on start up of the Windows NT or Windows 2000
machine or have to be actioned manually, when required.

�� Stop the Windows U/SQL Server.

�� Install and activate your U/SQL Server license. Refer to the Installing the
Server License on Windows NT Server section.

�� Set up the Configuration Settings, the Data Source Defaults and the
individual Data Source directive settings.

When you install the U/SQL Server software, a Service folder is created in the
Registry, with sub-folders for Configuration Settings, Data Source Defaults and an
individual Data Source folder for books.udd, the Books demonstration
application. These folders are populated with various directive values as a result
of the installation process.

You can have multiple revisions of U/SQL Server software resident on the same
machine with each given a separate Service name, of the form
USQLSDXXXN.NN.NNNN. The XXX indicates the data source driver installed,
for example, ACU for ACUCOBOL, MF for Micro Focus COBOL or BB for BBasic
ISAM; the N.NN.NNNN indicates the revision of U/SQL Server installed.

The following property pages show the functions provided by the U/SQL Service
Manager. Refer to the U/SQL Server Directives section, for the various directive
settings.

Server Administration

Configure and Use

85

The Server Control property page is displayed by clicking on the name of a
Service, for example, USQLSDMF3.10.0328.

This property page contains the following fields:

Port No. The port number is allocated during installation. The Port
number cannot be changed while the service is running.

Manual Start

Automatic Start

If you select Automatic, the U/SQL Server starts
automatically as a service process when the Windows NT
Server or Windows 2000 machine itself is started

If you select Manual, you have to start the U/SQL Server
via this utility using the Start Server and Stop Server
buttons.

Install Service

Uninstall Service

To uninstall U/SQL Server software:

�� Stop the service.

�� Click the Uninstall Service button to remove the
registry entries for the service.

Note: Once uninstalled this button is renamed Install
Service and you click it to re-install the service.

�� Then use the uninstallShield utility in the program
group.

Start Server

Stop Server

(Pause Server)

If you have selected Manual startup, then to start the U/SQL
Server service click Start Server. The traffic light symbol
changes from red to green to indicate that the service has
started:

Transoft U/SQL User Guide

86

To stop the U/SQL Server service click Stop Server. The
traffic light symbol changes from green to red to indicate
that the service has stopped.

All Server Control changes take effect immediately, except Port number which
cannot be changed while the service is running. All other changes to the
directives only take effect when the Save button is clicked.

Configuration Settings

Clicking on the Configuration Settings tab, for a particular service, displays the
Configuration Settings property page:

This contains the directives: MsgFileDir, LogFileDir, LogLevel,
NewDictionaryDir and License. Their default values (except License) are set up
during the U/SQL Server software installation but you can change them to meet
your requirements. The DSDrivers (Data Source Drivers) is defined in this form,
but this is also automatically set up during installation and must not normally be
changed.

To add a new directive click Add Key.

To change a directive's value, select the directive and click Modify Value.

Normally, you do not need to remove a directive and its value, but to delete a
directive, select it and click Delete Key.

After highlighting a Service, a new Data Source can be added by clicking the Add
Data Source button and entering the new name in the edit box provided

Configure and Use

87

terminated by the RETURN key. A highlighted data source is removed by clicking
the Delete Data Source button.

Click on an existing data source to view or modify its directive values. For
example, select the books.udd data source. These are presented on three
property pages.

Note: The same directives, under the three tab forms, can be set up as Data
Source Defaults to apply to all data sources unless overridden by entries in
individual Data Sources.

Settings

The Settings property page for a Data Source is used to set up the key directives;
the Dictionary, the Search List, any Translation File and whether you wish to
allow Read Only access to the data files. A Description can be entered in the box
at the bottom of the form.

The TranslationDLL directive of TSTRANNT.DLL is automatically set up.

Advanced

Click the Advanced tab for the Data Source to display the Advanced property
page:

Transoft U/SQL User Guide

88

This allows you to optionally enter: Directory where the U/SQL Server will start,
Substitution, FileNamePrefix, FileNameSuffix and TempDir. To add
directives click Add Key. To delete a highlighted entry click Delete Key. To
change a highlighted directive's value click Modify Value.

Security

Click the Security tab to display the Security property page:

This property page allows you to modify the Security settings. See the Security
section.

Configure and Use

89

U/SQL Server Directives

The U/SQL Server requires configuration directives on the Windows NT Server, or
Windows 2000 platforms. There must be entries for each UDD set up on the
server. These entries include:

�� The Data Source Name (DSN), by which the UDD and its associated
directive entries are known. The DSN is usually the name of the UDD.

�� The UDD name with its path, if the DSN is not the UDD name.

�� Optionally, there can be entries for read only, a searchlist for the data
files, file name substitutions, user connection level security and logging
information.

�� Other optional entries.

Note: It is important that the Data Source Names used in the U/SQL Server
configuration directives match the ODBC.INI settings for the U/SQL Client, see
the section Client ODBC.INI Directives, otherwise the client and server will not be
able to connect.

Where U/SQL Server Directives Reside

For Windows NT Server and Windows 2000, the ODBC.INI entries are contained
in Registry folders. The U/SQL Service Manager utility, in the Windows U/SQL
Adapters program group, is used to set up the Section Names, as folders, and
directives.

Note: Do not use the Registry editor, regedt32, to add or change directives, as
it is very easy to make a mistake. Always use the U/SQL Service Manager.

The U/SQL Server Directives

The U/SQL Server directives are grouped under three Section Names:

�� Configuration Section

This Section Name defines the global settings for the server for all data
sources.

�� Data Source Defaults

This Section Name defines the default directives for all data sources unless
overridden in individual data source section(s), below.

�� <data_source>

This Section Name is the name of a specific data source, for example,
<data_source> could be 'books.udd'. There can be any number of data
source entries (that is, UDDs) in the settings, describing different
applications you may wish to connect to, or different views of the same
application.

The following sections detail the directives that can be set under each of the three
Section Names in either the usqlsd.ini configuration file for UNIX platforms or in
the USQLSD.INI Registry folders for Windows NT Server and Windows 2000.

�� Configuration Section

Transoft U/SQL User Guide

90

�� Data Source Defaults Section

�� <data_source> Section.

Note: It is very important that the exact spelling, and this includes use of mixed
lower and UPPERCASE where appropriate, of both the directives and their values
is adhered to.

Example U/SQL Directives

The following is an example of directives viewed via the U/SQL Service Manager
under Windows NT Server.

Configure and Use

91

U/SQL Administrator Facilities

The U/SQL Administrator has a number of facilities.

�� You can test connect to a UDD to ensure you have setup the directives
correctly, before attempting to use an ODBC-enabled product. If you fail to
connect details of the connection failure are displayed.

�� You can view the ODBC drivers installed to ensure you have the correct
one(s) installed.

�� You can invoke the System & File Information utility. This provides useful
information to check that your U/SQL Client is installed successfully.

You can use the right mouse button to obtain different views of the Data Sources,
for example, as larger icons. Clicking the right mouse button after highlighting a
data source, provides an alternative menu to the Remove, Configure and Test
Connect buttons:

Note: If Microsoft's ODBC Driver Manager 3.0 or later is detected on your PC,
then a System DSN tab in addition to a User DSN tab are included in the U/SQL
Administrator property sheet, otherwise only a single Data Sources tab is
provided. Refer to the section Adding ODBC.INI Entries.

TestNet

You can test you local PC's configuration by clicking the TestNet button on the
U/SQL Administrator property sheet.

To test the network you will need to have the cliping utility invoked on the
server.

Test Connect to a UDD

Transoft U/SQL User Guide

92

When you have added a new UDD data source it is useful to ensure that the setup
is correct. To do this click the Test Connect button on the U/SQL Administrator
property sheet. If successful, then the a message informing you that the
connection has succeeded is displayed.

If the connection fails then the following message box is displayed:

Click Details for a full description of the error. This details of the error are
displayed in a text box as can be seen above.

If there is an error, the two most common reasons are either that the server is
not started, or the details entered for server and/or port are incorrect. Check
these settings and then see the Troubleshooting Guide for more information if
there is still a problem.

View ODBC Drivers installed

Select the Drivers tab, on the U/SQL Administrator property sheet to view the
Transoft U/SQL ODBC Drivers installed and their Version numbers:

Configure and Use

93

The Transoft Windows ODBC Driver is the Single-tier ODBC driver, while the
Transoft ODBC Driver is the Multiple-tier ODBC driver. To delete either driver,
select the driver and then click Remove.

System & File Information Utility

Select the About tab, on the U/SQL Administrator property sheet, and click
System Info. The System & File Information dialog box is displayed:

Alternatively select the File & System Information icon from the Start menu.

Transoft U/SQL User Guide

94

This utility provides useful checking information, for example, to ensure that the
Micro Focus COBOL TSMF32.DLL Data Source Driver can be loaded, simply click
on it and if successful then the Can Load column will change from Unknown to
Yes.

Configure and Use

95

Multiple-tier Administration (UNIX)

U/SQL Server Installation on UNIX

Once you have completed the U/SQL Server software installation on UNIX, the
following files and directories are installed on your system.

U/SQL directories and files

The following directories and files are relative to the base directory of your U/SQL
Server software installation, by default /usr/usqls:

Directory
(relative to U/SQL
base)

File Function

README Release notice. Read using:

more README

install.data Details of the installation including the
TCP/IP socket port to be used.

install.sh The installation script you have just used.

.chksum The checksums for all the installation files.
They are used to ensure that each file has
not been corrupted in any way.

<base>

.disc_dev The media device used for the installation.

The U/SQL Server software directory

Executables See the section U/SQL Server Executables.

Scripts See the section U/SQL Server Scripts.

usqlsd.ini The U/SQL Server configuration file.

usqlcs.msg The U/SQL Server error messages file.

*.dat Directives control files.

tstrans.dat Skeleton translation table file. See the
section Foreign Character Set Support.

/bin

*.trn Foreign character set conversion files.

*.a

*.o

For certain Data Sources only.

Library modules of the U/SQL Server.

/lib

makefile For linking the U/SQL Server to the data
source file handler. Refer to the Installing
the Multiple-tier U/SQL Server section.

Transoft U/SQL User Guide

96

This directory contains the data files for the Books
Wholesaler demonstration.

books.udd The dictionary (UDD) for the Books
Wholesaler demonstration.

/example

books.ufd The UFD import file to create the
books.udd.

U/SQL Server Executables

The following executables are included with the U/SQL Server software and are
found in the bin directory, by default /usr/usqls/bin.

Executable Function

usqlsd The U/SQL Server daemon.

usqli The Interactive U/SQL server based client utility. This utility
allows SQL syntax to be executed interactively. See the usqli
section.

cliping A diagnostic program which allows your TCP/IP connection to be
tested. This is only used if your PC application appears to have
failed to connect. It is used with the TestNet utility.

freeport Finds the next free socket port number.

U/SQL Server Scripts

The following scripts are included in the U/SQL Server installation, or created
when install.sh is run, and are found in the bin directory, by default
/usr/usqls/bin:

Script name Function

serv_setup.sh This is called by the install.sh script but can be run again at
any time to:

�� Maintain the usqlsd.ini configuration file. It uses the
ConfigSet.dat and DatSrcDefs.dat directive
prompts files.

�� View the install.data file showing the socket port
number.

start_serv.sh Starts the U/SQL Server defaulting to the port number that
was determined at install time. Alternatively the next
freeport or any other port number can be used.

stop_serv.sh Stops the U/SQL Server running. It displays all the Servers
running and requests the port number of the Server you
wish to stop.

Configure and Use

97

check_serv.sh Checks if the Server is running. If it is, then the port number
and PID are reported.

cobol_export.sh

cobol_import.sh

cobol_rebuild.sh

These scripts are used to export and import COBOL UDDs.
See the section Modifying a UDD.

You normally invoke these scripts from the bin directory, for example:

cd /usr/usqls/bin

./serv_setup.sh

You can also display the contents of these scripts by performing the following:

more <script_name>

or

pg <script_name>

The U/SQL Server

The U/SQL Server program, usqlsd, is a fully daemonized server. This means
that it will automatically become a background process, disassociating itself from
the current process group and user terminal. No special start-up script is needed
to do this and it can be directly run from a terminal or, more typically, from a
simple rc start-up script.

The purpose of the initial Server daemon is to wait for a client connection request
on a pre-specified TCP/IP socket port. After a successful TCP connection is
established, the Server daemon forks a child process to exclusively handle this
connection for the client. When the connection is closed, the server process for
that client terminates. There is therefore one new server process for each client
ODBC connection made.

Transoft U/SQL User Guide

98

Starting and Stopping the UNIX Server

Starting the UNIX U/SQL Server

To start the U/SQL Server you will need to have a valid server license installed
and defined by the License directive in the usqlsd.ini configuration file. Refer to
the Installing the Server License on UNIX Platforms and Configuring Multiple-tier
U/SQL sections.

Typically the U/SQL usqlsd Server daemon is automatically initiated by an rc
start-up script, at system boot time. This is defined during the initial U/SQL
Server software installation.

It is possible, however, to start the U/SQL Server process at any time from a user
terminal. To do this, execute the start_serv.sh script, from the bin directory
below the base directory of the U/SQL Server software installation, for instance,
/usr/usqls/bin as follows:

cd /usr/usqls/bin

./start_serv.sh

This can be useful for initial testing and for special circumstances such as
manually restarting a terminated U/SQL Server.

Note: Ensure the U/SQL Server is started with a username and group ID which
have the permissions required to access the UDD and data files. It is
recommended that the U/SQL Server process be started as UNIX root, which will
then enable it to change to the user ID specified in the ODBC connection. This
results in a more secure system. See the section Multiple-tier Security.

Stopping the UNIX U/SQL Server

You can stop the U/SQL Server at any time by running the stop_serv.sh script,
again from the bin directory:

cd /usr/usqls/bin

./stop_serv.sh

This displays details of the U/SQL Servers running and request the port number
of the Server(s) you would like to shut down. Once a port number is entered, all
U/SQL Server(s) with the same port number stop with the message:

The server has been shutdown successfully.

Configure and Use

99

Setting up the UNIX usqlsd.ini File

The UNIX usqlsd.ini configuration file can either be managed manually using a
suitable editor (for example, vi) or normally by the serv_setup.sh script, which
is located in the bin directory under the U/SQL Server software installation
directory, which is by default /usr/usqls/bin. The usqlsd.ini file is maintained
in the bin directory.

You must be signed on as superuser to invoke the script in the bin directory:

cd /usr/usqls/bin

./serv_setup.sh

The Main Menu is displayed:

U/SQL SERVER CONFIGURATION AND CONTROL - MAIN MENU
==

1) DATA SOURCE CONFIGURATION

2) CONFIGURATION SETTINGS

3) START SERVER

4) STOP SERVER

5) LOG FILE CONTROL

6) CREATE, VIEW & REMOVE SERVER LICENSE

7) VIEW THE 'usqlsd.ini' FILE

Enter '?' or '<NUMBER>?' for HELP, 'x' to EXIT.

Select option:

To add or modify the entries for any Data Source, select 1 from the Main Menu.
The Data Source Configuration menu is displayed:

DATA SOURCE CONFIGURATION - MENU

1) Modify Data Source Defaults

2) Add a new Data Source

3) Modify a Data Source

4) Delete a Data Source

5) List Data Sources

6) View the 'usqlsd.ini' file

Enter '?' or '<NUMBER>?' for HELP, 'x' to Return to Main Menu.

Select option:

�� Select 1 to modify the [Data Source Defaults] section.

�� Select 2 to add a new [<Data_source_name>] section. You are first
requested to enter the new UDD name. This does not have to have a
'.udd' extension. For example, you may have two data sources, Company1

Transoft U/SQL User Guide

100

and Company2, which both use the same UDD, company.udd, see the
Multi-company Support section.

You are then prompted for all the other possible data source directives.

�� Select 3 to modify the existing entries of a data source. You cannot add
new entries. To do this, first delete the data source (Select 4) and then
add a new data source (select 2).

�� Select 4 to delete a data source; select 5 to display a list of all the data
sources; and select 6 to view the contents of the usqlsd.ini configuration
file.

After returning to the Main Menu, to modify the entries in the [Configuration
Settings] section of the usqlsd.ini configuration file, select 2. You are prompted
with the current setting for each directive, in turn, which your either retain by
just pressing RETURN, or modify as you wish.

Select 5 from the Main Menu to clear the log file usqlcs.log. This displays:

Log file: /usr/usqls/bin/usqlcs.log

Size of the log file: 130 bytes

Modification date and time: 07/Nov/1997 09:58

Do you want to clear the log file (y/n):

This serv_setup.sh script can also be used to start (select 3) or stop (select 4)
the U/SQL Server. These selections simply invoke the start_serv.sh and
stop_serv.sh scripts respectively.

Manually Amending U/SQL Server Directives

The U/SQL Server Directives

The U/SQL Server directives are grouped under three Section Names:

�� [Configuration Settings]

This Section Name defines the global settings for the server for all data
sources.

�� [Data Source Defaults]

This Section Name defines the default directives for all data sources unless
overridden in individual data source section(s), below.

�� [<Data_source_name>]

This Section Name is the name of a specific data source, for example,
<Data_source_name> could be 'books.udd'. There can be any number of
data source entries (that is, UDDs) in the settings, describing different
applications you may wish to connect to, or different views of the same
application.

The following sections detail the directives that can be set under each of the three
Section Names in the usqlsd.ini configuration file.

�� [Configuration Settings] Section

�� [Data Source Defaults] Section

�� [<Data_source_name>] Section.

Configure and Use

101

Note: It is very important that the exact spelling, and this includes use of mixed
lower and UPPERCASE where appropriate, of both the directives and their values
is adhered to.

Example U/SQL Directives

A sample usqlsd.ini configuration text file is:

[Configuration Settings]

DefaultServer=centralhost

DefaultPort=7000

NewDictionaryDir=/usr/usqls/bin

LogFileDir=/usr/usqls/bin

LogLevel=0

MsgFileDir=/usr/usqls/bin

[Data Source Defaults]

ReadOnly=Yes

Security=Host

BecomeUser=Y

UnauthorizedAccess=N

SecurityFile=/usr/usqls/security.txt

[Company01]

Dictionary=/u/data/company.udd

Directory=/usr/usqls/bin

Searchlist=/u/data01;/u/data

FileNamePrefix=AA

FileNameSuffix=ZZ

Substitution=##=01;??=xy

TempDir=/u/tmp

[Company01] is the Data Source Name (DSN) that you want the ODBC-enabled

products to recognize. It is usually the name of the UDD, for example
[company.udd], in which case the '.udd' extension is included.

If you are describing multiple companies then each DSN name will be different to
the UDD. Refer to the section Multi-company Support.

A minimum usqlsd.ini configuration file will usually consist of the following:

[Configuration Settings]

DefaultServer=centralhost

DefaultPort=7000

MsgFileDir=/usr/usqls/bin

LogFileDir=/usr/usqls/bin

LogLevel=0

[books.udd]

Directory=../example

Transoft U/SQL User Guide

102

[books32.udd]

Dictionary=../example/books.udd

Directory=../example

Configure and Use

103

Micro Focus COBOL Specific Issues

Micro Focus COBOL runtime

Multiple-tier U/SQL for Micro Focus COBOL assumes that a valid COBOL run-time
is installed on the target server system, and that (where necessary) the
appropriate License Manager is installed and running.

The COBOL system is accessed by the COBDIR environment variable, which
needs to contain the full path to the directory where the Micro Focus COBOL
product is installed. In addition, because Micro Focus makes use of dynamic
linked modules, it is necessary to include the path to the COBOL libraries in the
environment variable LD_LIBRARY_PATH (some machines use SHLIB_PATH).
The path to the COBOL libraries is, by default, $COBDIR/coblib, that is the sub-
directory 'coblib’ of the COBOL directory.

Note: The COBOL COBDIR environment variable, must be set prior to starting
the U/SQL Server.

To ensure that the COBDIR environment variable has been correctly set, run the
following:

cobrun -V

The Micro Focus COBOL copyright message is displayed. If this is not the case,
set the COBDIR environment variable appropriately.

Refer to your Micro Focus COBOL System Reference manual for further
information on setting up the COBOL environment.

Using Micro Focus COBOL V3.0/3.1 (UNIX Multiple-tier)

On UNIX platforms, to ensure record locking works correctly with Micro Focus
COBOL versions 3.1 or 3.0, the following line should be added to the top of the
configuration file which is pointed to by the COBCONFIG environment variable:

set lock_mode=2

If the COBCONFIG environment variable is not defined, then the file will be
called cobconfig and can be found in the location pointed to by the COBDIR
environment variable. If this file does not exist, simply create it using a standard
text editor.

This will ensure that the record locking mechanism used is the same for both
COBOL-base applications and U/SQL Adapters, and will not have any adverse
effects on your COBOL applications. For more details on the lock_mode run-time
configuration, refer to your Micro Focus COBOL documentation.

Changing the lock mode, in the cobconfig file, must only be performed when
there are no COBOL application programs running. It is recommended that the
server is re-booted, before any changes are made, to ensure that this is the case.

Note: This is not required for Micro Focus COBOL version 3.2, and above, or the
Single-tier Windows platforms.

Transoft U/SQL User Guide

104

Additional Information

Linking external file handlers

Since U/SQL makes use of the standard Micro Focus EXTFH file handler, the C-
ISAM library can be linked into U/SQL in the same way it would be linked into a
Micro Focus COBOL runtime system.

To do this, the following entry in the makefile shipped with the U/SQL release:

COBLIB= cobol.a

must be modified to:

COBLIB= cobol.a -m ixfile=cixfile -L/usr/lib +lisam

where /usr/lib is the UNIX directory containing the C-ISAM library libisam.a.

This mechanism is described in detail in the Callable File Handler section of the
Micro Focus Reference manual. This facility does not apply when the standard
Micro Focus file system is used.

U/SQL requires the directive MFIsam=N to be included in the usqlsd.ini
configuration file.

Configure and Use

105

Client Configuration

U/SQL Client Installation Files

The installation setup program performs the following tasks:

�� It checks that you have the correct version of Microsoft ODBC Driver
Manager installed. It is recommended that you have at least, version 2.5
ODBC32.DLL located in the \WINDOWS\SYSTEM directory. If you do
not have this, setup installs it.

�� It installs the U/SQL ODBC Driver (TSODBC32.DLL) into the
\WINDOWS\SYSTEM directory.

�� It prompts you:

o What is your server called? Enter the server name, for example,
yourserver.

o What is your server socket port number? Enter the socket port
number you noted when you installed the U/SQL Server, for
example, 7000.

o It installs the U/SQL Administrator which is used to set up the ODBC.INI
directives entries.

o If optionally ordered, it installs the U/SQL Manager, which is used to
create, view, amend or delete the UDD for COBOL data sources. It can
also be used to set up the ODBC.INI directive entries.

Note: For most data source drivers, only the U/SQL Administrator is
available.

�� Optionally it installs a demonstration application, written in Microsoft
Visual Basic version 5, for a Books Wholesaler. This demonstration shows
examples of various queries, graphics and OLE (Object Linking and
Embedding) to Microsoft Excel spreadsheets. The Visual Basic source is
provided to help you review the application. The sample data files and
corresponding UDD are included so that the application can be run.

For the Books demonstration, it edits the ODBC.INI Registry entries to add
a section for the BOOKS32.UDD data source and dictionary.

�� Optionally it installs the Interactive U/SQL utility, Win USQLi, that allows
sample queries to be made and provides export/import functions for
UDDs. This is a simple ODBC-enabled product that you can use to query
the Books Demonstration data or your own application tables. For more
details see the Win USQLi section.

�� Optionally it installs the TestNet utility that is used to test your network.

�� It installs the License Tool that is used to install and examine the
License. See the Licensing section.

�� It creates a set of U/SQL Client icons in the appropriate Windows program
group.

At this point, the installation of the Multiple-tier U/SQL Client software is
complete.

Transoft U/SQL User Guide

106

Interactive U/SQL Utilities

There are two Interactive U/SQL utilities, one a Windows based application, Win
U/SQLi, supplied with the U/SQL Client software for both Single and Multiple-tier
versions; the other, usqli, is supplied with Multiple-tier UNIX U/SQL Server
software.

These utilities are not meant to provide comprehensive reporting tools. But they
are useful for the development and testing of specific SQL queries. They are also
useful for (bulk) INSERTs, UPDATEs or DELETEs to your data. In addition, they
provide a facility for exporting and importing UDDs.

Win U/SQLi also provides a means of querying the log file, usqlcs.log, and a
System and File Information utility. These are described in the sections How to
Query the Log File and System & File Information Utility, respectively.

Details of the usage of the U/SQL utilities can be found in the following two
chapters:

�� Win U/SQLi

�� usqli on UNIX Servers.

Transaction Processing Syntax

Both the Interactive U/SQL utilities, Win U/SQLi and usqli, support the
Transaction Processing syntax, for selected Data Sources. The syntax is as
follows:

TRANSACTION [MODE] ON |
OFF

Commence/Terminate transaction processing.

COMMIT [WORK] Commit a transaction.

ROLLBACK [WORK] Rollback a transaction.

For full details, refer to the Transaction Processing section.

Configure and Use

107

Win U/SQLi

Win U/SQLi

Win U/SQLi is a Windows based utility, which is used for:

�� The development and testing of specific SQL queries.

�� Providing (bulk) INSERTs, UPDATEs or DELETEs to your data.

�� Providing a facility for importing and exporting UDDs.

�� Providing a means of querying the log file, usqlcs.log. Refer to the
section How to Query the Log File.

To invoke the Win U/SQLi utility, select the Win USQLi icon from the Start
menu. The Win USQLi32 window is displayed:

To open an existing UDD (that is, to connect to an existing UDD) either, click the

 (Open) icon or select the Open UDD command from the File menu. For
example, to connect to the Books Demonstration UDD, for Single-tier select
booksw32.udd, and for Multiple-tier select books32.udd.

The Win U/SQLi user interface consists of two windows, a Query window and a
Results window. A third window, Query Plan, may be selected by selecting the
Query Plan option from the Query menu.

Transoft U/SQL User Guide

108

After entering your query, for example, 'select * from customer' (as shown

above), you can execute it by either:

�� Clicking the (Execute the current query) icon

�� Pressing CTRL-E

�� Selecting the Execute command from the Query menu.

This displays the Results and the Query Plan, as shown above. Refer to the The
Query Planner section form more information on the Query Planner.

The Win U/SQLi product allows execution of a portion of the SQL specified in the
Query window by highlighting a section of text and executing the query. This
results in only the highlighted text being executed.

The Results set is limited only by the memory available. To view the time taken
for the query to execute select the Performance command from the View
menu. The following information is displayed at the end of the Results:

Query Execution & Row Retrieval : 0.71

Total Application Time : 0.749 secs

The Query Execution time is also displayed in the status bar.

Multiple UDDs may be opened simultaneously in separate sets of Query, Results
and, optionally, Query Plan windows. A UDD is closed by selecting the Close UDD
command from the File menu.

Note: In practice, it is not wise to bring back very large results sets because
there is noticeable performance degradation due to Win U/SQLi holding all the
results data in memory.

To abort a query at any time, press the ESCAPE key.

The following sections discuss:

�� Win U/SQLi SQL Syntax

�� Win U/SQLi User Login Security

�� Saving and Loading a Query

�� Exporting and Importing UDDs - Upgrading UDDs

Configure and Use

109

�� Win U/SQLi Scripting.

Transoft U/SQL User Guide

110

Win U/SQLi

Win U/SQLi is a Windows based utility, which is used for:

�� The development and testing of specific SQL queries.

�� Providing (bulk) INSERTs, UPDATEs or DELETEs to your data.

�� Providing a facility for importing and exporting UDDs.

�� Providing a means of querying the log file, usqlcs.log. Refer to the
section How to Query the Log File.

To invoke the Win U/SQLi utility, select the Win USQLi icon from the Start
menu. The Win USQLi32 window is displayed:

To open an existing UDD (that is, to connect to an existing UDD) either, click the

 (Open) icon or select the Open UDD command from the File menu. For
example, to connect to the Books Demonstration UDD, for Single-tier select
booksw32.udd, and for Multiple-tier select books32.udd.

The Win U/SQLi user interface consists of two windows, a Query window and a
Results window. A third window, Query Plan, may be selected by selecting the
Query Plan option from the Query menu.

Configure and Use

111

After entering your query, for example, 'select * from customer' (as shown

above), you can execute it by either:

�� Clicking the (Execute the current query) icon

�� Pressing CTRL-E

�� Selecting the Execute command from the Query menu.

This displays the Results and the Query Plan, as shown above. Refer to the The
Query Planner section form more information on the Query Planner.

The Win U/SQLi product allows execution of a portion of the SQL specified in the
Query window by highlighting a section of text and executing the query. This
results in only the highlighted text being executed.

The Results set is limited only by the memory available. To view the time taken
for the query to execute select the Performance command from the View
menu. The following information is displayed at the end of the Results:

Query Execution & Row Retrieval : 0.71

Total Application Time : 0.749 secs

The Query Execution time is also displayed in the status bar.

Multiple UDDs may be opened simultaneously in separate sets of Query, Results
and, optionally, Query Plan windows. A UDD is closed by selecting the Close UDD
command from the File menu.

Note: In practice, it is not wise to bring back very large results sets because
there is noticeable performance degradation due to Win U/SQLi holding all the
results data in memory.

To abort a query at any time, press the ESCAPE key.

The following sections discuss:

�� Win U/SQLi SQL Syntax

�� Win U/SQLi User Login Security

�� Saving and Loading a Query

�� Exporting and Importing UDDs - Upgrading UDDs

Transoft U/SQL User Guide

112

�� Win U/SQLi Scripting.

Configure and Use

113

Win U/SQLi SQL Syntax

Win U/SQLi accepts ODBC shorthand SQL syntax in the Query window, as
defined in the SQL Syntax Supported section. For example:

SELECT * FROM customer WHERE {FN LENGTH(cust_name)} = 17;

Note the following:

�� Multiple lines can be entered.

�� All SQL statements must end with a semicolon ';'.

�� The SQL syntax can include, in addition to the SELECT statement,
INSERT, UPDATE and DELETE verbs.

�� GRANT and REVOKE privileges syntax is supported. See the Security
section.

Note: Multiple GRANT/REVOKE commands can be used within one script /
execution as long as they are separated by semi-colons ';'.

�� The SQL transaction processing syntax (for selected Data Sources) is
supported. See Transaction Processing Syntax section.

�� INFO <tablename> is supported, printing out the CREATE TABLE and
CREATE INDEX statements for the <tablename> given. This returns
information about the table and index definition of the table specified.

Note: Refer to the SQL Syntax Supported section.

Transoft U/SQL User Guide

114

Win U/SQLi User Login Security

Win U/SQLi supports Multiple-tier user connection security and/or GRANT and
REVOKE user connection security. For full details on how to set up the security
options refer to Security section.

If Multiple-tier user connection security is in operation then you will be prompted
for username and password login entries, as follows:

If GRANT and REVOKE user connection security is also operational, and your
username and password are the same as for those for Multiple-tier user
connection security, then you will not be prompted for a further login. However, if
they are different or only GRANT and REVOKE user connection security is
operational, then you are prompted as follows:

Configure and Use

115

Saving and Loading a Query

Any query in the Query window can be saved by either:

�� Clicking the Save the current query to a file) icon

�� Selecting the Save command from the Query menu.

A Save Query File As dialog box is displayed:

This allows you to enter the name you want to give the query.

A saved query may be loaded by either clicking on the Load a query file)
icon or by selecting the Load command from the Query menu, which displays
the Load Query browser. After you select a file the saved query is placed in the
Query window ready for execution.

Transoft U/SQL User Guide

116

Exporting and Importing UDDs - Upgrading UDDs

For COBOL data sources, it may be necessary to upgrade existing dictionaries
created with older revisions of U/SQL, to enhance their performance and to take
advantage of the increased number of index key parts (from 8 to 64) supported
from revision 2.65. This can be achieved by first exporting the existing version of
the UDD to a text file representation of the dictionary components and then re-
importing these components into a new UDD with the latest structure.

To undertake this you must have Read-Write capability.

Note: For non-COBOL dictionaries, you will already have this textual
representation file, called for example, dictname.ufd. To create an upgraded
UDD, simply repeat the steps detailed in the section Creating the UDD from the
UFD Text File. However, it is possible to use the export and import process of Win
U/SQLi for any dictionary.

Win U/SQLi can be used to upgrade an existing Single or Multiple-tier UDD as
follows:

1. Invoke Win U/SQLi.

2. Either click the Open an existing UDD icon from the toolbar, or select
the Open UDD command from the File menu, then select the required
UDD from the list.

3. Either click the Export data to a file icon from the toolbar, or select the
Export command from the Table menu.

4. Select the UFD Tables View and the tables you want to export (ordinarily
this will be All) by highlighting them, and then clicking the Add or Add All
button.

5. Click OK.

6. Provide a File name for the text file, which will hold the exported data.
(This file is a textual representation of the UDD).

7. The tables are now exported to the text file in turn. Once a table has been
successfully exported, the word 'Completed' is displayed to the right of the
table name.

8. Create a new UDD to which the exported text file will be imported, by
either clicking on the Create a new UDD icon from the toolbar, or
selecting the New UDD command from the File menu. Select where you
want the UDD to be created, either Local for Single-tier, or Remote, for
Multiple-tier.

Set up the ODBC.INI directives, as described, for Single-tier in the Adding
ODBC.INI Entries section, and for Multiple-tier in the Adding Client
ODBC.INI Entries section.

It will be necessary to supply a new name for this UDD file, but it can be
renamed to the original UDD file name later.

9. Click the Import Tables icon or select the Import command from the
Table menu. Select the text file which was created in step 6 above.

10. An Import Tables dialog box is displayed, showing each table as it is
imported. Each successfully imported table has 'Imported' displayed to the
left of the table name.

11. After all the tables have been imported, click OK.

12. Click the Update selected tables icon, or select the Update command
from the Tables menu. Select the appropriate data source from the

Configure and Use

117

dialog, and click Update. This creates the UDD tables from the UFD
tables.

13. The following message is displayed:

All tables successfully updated.

14. Click OK.

15. The new UDD file can be renamed to the original name when you are
satisfied that it has been created correctly. You can check that the new
UDD is correct by performing one or more queries on it using Win U/SQLi.

Note: If you have activated GRANT and REVOKE security, then there are
restrictions on Exporting and Importing.

Transoft U/SQL User Guide

118

Win U/SQLi Scripting

The Windows interactive SQL utility Win USQLi can be run in a non-interactive
mode which involves sending a series of commands to Win USQLi in the form of a
script.

Win USQLi commands are prefixed by ‘UDD_’ to make them easily distinguishable
from SQL commands. However, the script commands can be interspersed with
SQL statements. When using a combination of script commands and SQL
statements, the script commands must not be terminated by a ';' (semicolon), as
are the SQL statements. For example:

UDD_CONNECT (DEMO.UDD)

SELECT * FROM CUSTOMER;

The basic format of the commands is the command-name followed by comma
separated parameters enclosed in parenthesis. For example:

COMMAND (Parameter1, Parameter2, …..)

The commands perform basic tasks such as:

UDD_CREATE Creates a data dictionary

UDD_CONNECT Connects to an ODBC data source

UDD_IMPORT Imports into a data dictionary using a UFD file

UDD_UPDATE Updates the data dictionary once the import is

completed

UDD_DISCONNECT Disconnects from an ODBC data source

UDD_CONFIGURE Modifies ODBC data source attributes

UDD_EXECUTE Executes an SQL query

UDD_EXPORT Exports the UFD into the specified output file.

Format and Use of the Win USQLi script file

To execute the Win U/SQLi commands, create a text file which contains the
commands, and pass this to the Win USQLi as a run-time command-line
parameter. Win U/SQLi script files must have a '.SQL' extension.

For example, consider the script file c:\tmp\test.sql, which contains the
following Win U/SQLi commands:

Configure and Use

119

UDD_CONFIGURE(booksw32.udd,DSD=MF;PATH=f:\usqlc\bookdemo\data\booksw.
udd;SRCH=f:\usqlc\bookdemo\data;)

UDD_CONNECT (booksw32.udd)

UDD_EXECUTE (SELECT * FROM CUSTOMER, f:\tmp\output.txt)

The above script can be executed with the following command:

c:\usqlc\winusqli\wusqli.exe c:\data\sql\test.sql

Where wusqli.exe is the actual file name of the Win U/SQLi executable.

This command can be executed from the Windows Taskbar’s Start or Run option
under Windows 95, Windows 98 or Windows NT 4.0.

When the script is executed, it connects to the booksw32 Universal Data
Dictionary and issues the SQL query:

SELECT * FROM CUSTOMER

The result of the query is placed in the output file c:\tmp\output.txt. A log file
is also produced in the local directory which records each command executed,
and its success or failure. The log file has a '.log' extension. For example, if your
script file is called test.SQL then the log file will be called test.log.

Command specification

UDD_CREATE (Environment, Data Source Name, Directives)

The UDD_CREATE command is used to physically create a new data dictionary
(UDD).

This command uses the following parameters:

Environment The two values allowed for this parameter are LOCAL or
REMOTE, where LOCAL indicates a Single-tier model, and
REMOTE indicates a Multiple-tier model.

Data Source
Name

This parameter is used to specify the name of the data
dictionary, for example, 'demo.udd'. This name is used as
the data source name 'seen by ODBC-enabled products'.
For Multiple-tier the '.udd' extension is mandatory. For
Single-tier this extension is optional. However, a full
pathname with a '.udd' extension must be specified in full
in the PATH directive as described below.

Directives This parameter is used to specify a string containing a list
of directives which differ for Single or Multiple-tier. The
format of this parameter is a defined directive name,
followed by an equals sign ('='), followed by that
directives value, and a semicolon (';') delimiter.

Common directives:

Directive Status Description

DESC Optional Provides a description of the data dictionary for

Transoft U/SQL User Guide

120

documentation purposes.

For example:

DESC=The books Universal Data Dictionary;

Multiple-tier directives:

Directive Status Description

SERV Mandatory Specifies the server where this dictionary is
located.

PORT Mandatory Specifies the port number used to connect to the
server daemon.

TIME Optional This is a global socket port number time-out
specified in seconds, used when retrieving data
from the U/SQL Server. If results are not returned
within the specified time limit, the connection is
assumed to have failed.

If the time-out is zero or is not specified, then
there is no time-out and the U/SQL ODBC driver
will wait indefinitely.

For example:

PORT=3456;

Single-tier directives:

Directive Status Description

DSD Mandatory Specifies the data source for this dictionary. The
value used must be one of the following:

MF - For Micro Focus COBOL data dictionaries

ACU - For ACUCOBOL data dictionaries

CSM - For C-ISAM data dictionaries

IDOL - For IDOL-IV data dictionaries

PATH Mandatory Specifies the full path and filename of the physical
dictionary file.

SRCHLIST Mandatory Specifies the path or paths of the data files for the
dictionary.

SUBS Optional Specifies the substitution to use.

LOGF Optional Specifies the directory of the log file used.

LOGL Optional Specifies the logging level used.

PREF Optional Specifies the filename prefix to use.

SUFF Optional Specifies the filename suffix to use.

For example:

PATH=C:\USQL\DATA\DEMO.UDD;

Configure and Use

121

See the ODBC.INI Directives section for more details.

An example of how to use the UDD_CREATE command is:

UDD_CREATE (LOCAL, DEMO.UDD, DSD=MF;

PATH=C:\USQL\DATA\DEMO.UDD;

SRCH=C:\USQL\DATA; LOGL=3;)

Note: The directory C:\USQL\DATA must exist, otherwise the example program

will not work.

UDD_CONFIGURE (Data Source name, Directives)

The UDD_CONFIGURE command allows the attributes of an existing data source
to be set. The parameters are the name of the existing data source, and then the
attributes and values which are to be set or altered. These must be in the same
format as specified for the UDD_CREATE command.

For example:

UDD_CONFIGURE (DEMO.UDD, SRCH=C:\USQL\DATA;)

UDD_CONNECT (Data Source name)

The UDD_CONNECT command establishes a connection to the data source which
in the case of U/SQL is usually the name of the UDD. It is this connection that the
UDD_IMPORT and UDD_UPDATE commands will use for their execution.

For example:

UDD_CONNECT (DEMO.UDD)

UDD_IMPORT (UFD File)

The UDD_IMPORT command imports the specified UFD text file into a Universal
Data Dictionary (UDD). You must connect to the UDD using the UDD_CONNECT
command, before issuing the UDD_IMPORT command. The UFD file parameter
must include the full path and filename of the UFD text file to be used.

For example:

UDD_IMPORT (C:\UFD_FILES\DEMO.UFD)

UDD_UPDATE ()

The UDD_UPDATE command updates the UDD with the imported UFD
information. Before issuing this command, you must import the UFD text file into
a data dictionary using the UDD_IMPORT command.

For example:

UDD_UPDATE()

UDD_DISCONNECT ()

The UDD_DISCONNECT command closes the connection to the UDD.

For example:

UDD_DISCONNECT()

Transoft U/SQL User Guide

122

UDD_EXECUTE (SQL query, Output file)

The UDD_EXECUTE command executes an SQL query using your current UDD
connection, and writes the output to a file.

It uses the following parameters:

SQL
query

A SQL query

Output
file

The full path and filename of the file to write the output to.

For example:

UDD_EXECUTE (SELECT * FROM CUSTOMER, d:\usqliw\custout.txt)

UDD_EXPORT (Output UFD File, [Delimited])

Note: UDD_EXPORT is only available in Win U/SQLi from versions of U/SQL
3.10.407 and onwards.

This command exports the UFD into the specified output file. A second parameter
can also be specified as follows:

"SPACE" (the default) - the format of the UFD will be space-padded

"COMMA" - the format of the UFD will be comma-delimited.

These formats are the same as on UNIX with usqli.

For example:

UDD_EXPORT(C:\UFD_FILES\NEW.UFD)

UDD_EXPORT(C:\UFD_FILES\NEWDELIM.UFD,COMMA)

Example Script

The following sample script creates a new data dictionary DEMO.UDD in the
'C:\USQLCSA\DATA' directory, connects to it, and then imports the dictionary
details from the TABLES.UFD text file. It then updates the data dictionary and
disconnects from it.

UDD_CREATE (LOCAL, DEMO.UDD,

DSD=MF;

PATH=C:\USQL\DATA\DEMO.UDD;

SRCH=C:\USQL\DATA;

LOGL=3);

UDD_CONNECT (DEMO.UDD)

UDD_IMPORT (C:\SCRIPTS\TABLES.UFD)

UDD_UPDATE ()

UDD_DISCONNECT ()

Configure and Use

123

usqli on UNIX Servers

Before you can use the UNIX server based interactive U/SQL utility, usqli you
must have started the U/SQL Server. This utility allows ODBC shorthand SQL
syntax, (as defined in the SQL Syntax Supported section), to be applied to your
data at the server without the need for an ODBC-enabled client product.

This utility is not meant to provide a comprehensive host-based reporting tool.
But it is useful for the development and testing of specific SQL queries. It is also
useful for (bulk) INSERTs, UPDATEs or DELETEs to your data and for exporting
and importing UDD tables. Additionally it can be used to set up GRANT and
REVOKE privileges. See the Security section.

This section discusses the following aspects of the usqli:

�� Running usqli

�� usqli command line options

�� usqli User login security

�� usqli facilities

�� Using usqli to query the data definitions within a UDD

�� Using usqli to export and import your UDD.

Running usqli

The usqli utiltiy is located in the bin directory below the base directory of the
U/SQL Server software installation, for instance, /usr/usqls/bin. It must be
started in the base directory of your data files, for example, /usr/data_files,
and can be invoked either directly or with the name of the UDD as a parameter.
It is a good idea to have the /usr/usqls/bin, or your equivalent, in each user's
PATH.

The usqli utiltiy acts as a client and requires a U/SQL Server process to connect
to. On connection, the usqli examines the usqlsd.ini configuration file to try and
locate the server's name and port number. If the entries are not found, usqli
prompts interactively for either/both the server name or/and port number. The
server name and port number entries in the usqlsd.ini can be placed in an
individual UDD's section, or can be placed in the global [Configuration Settings]
section. When trying to connect, usqli first looks under the UDD's section for the
server information, then under the [Configuration Settings] section, and finally
prompts the user if not found.

From your data files' base directory, for instance, /usr/data_files, either enter:

/usr/usqls/bin/usqli

or, if the bin directory is in PATH:

usqli

This displays:

Interactive U/SQL Utility.

Copyright (c) Transoft Ltd. 1993-98

Enter UDD name:

Transoft U/SQL User Guide

124

Type in the UDD name, for example, books.udd, and the U/SQL prompt
appears:

Enter UDD name: books.udd

Connected to server: [Engine v3.00.0002][C-ISAM v3.00.0001]

Opened: 'books.udd'

U/SQL>

Alternatively, usqli can be invoked with the UDD name as a command line
parameter:

usqli books.udd

which displays:

Interactive U/SQL Utility.

Copyright (c) Transoft Ltd. 1993-98

Connected to server: [Engine v3.00.0002][C-ISAM v3.00.0001]

Opened: 'books.udd'

U/SQL>

If the UDD entered is not found, the following error message is displayed:

*** Error: Cannot open UDD file <name>

ODBC State: C1000

Failed to connect. Aborting...

Assuming the UDD is found, most ODBC SQL syntax can be entered, for example:

U/SQL> select * from customer;

All SQL statements must end with a semicolon ';'.

The SQL syntax can include, in addition to the SELECT statement, INSERT,
UPDATE and DELETE verbs.

Note: Refer to the Advanced Use of U/SQL Adapters section, for examples of SQL
syntax.

Product revision numbering is displayed, for example:

[Engine v3.00.0002][C-ISAM v3.00.0001]

To exit from the Interactive U/SQL Utility, enter the following (with no
semicolon):

U/SQL> quit

usqli command line options

To obtain the usage of usqli, execute the following:

usqli -h or usqli -?

which displays:

Usage: usqli [<options>]

<options>:

Configure and Use

125

-c Create dictionary.

-u Update dictionary.

-x Do not display Engine and DSD version numbers.

-i <in_file> Input SQL file.

-o <out_file> Output file.

-e <err_file> Output error file.

-M <uid>[:<pwd>] Multiple-tier Security.

-G <uid>[:<pwd>] GRANT and REVOKE Security.

-h|? Display usage.

<udd_name> Dictionary name.

<tbl_name>... Table name(s) for '-u'. Must follow <udd_name>.

These command line options are used as follows:

-c Create dictionary <udd_name>.

This command is used to create an empty UDD. It isl
usually followed by an import of the UFD text file,
representing the structure of your data files, into the new
UDD, and then the -u, update dictionary command. For
example:

./usqli -c new.udd Create the new dictionary

./usqli new.udd Connect to the new dictionary

and then at the U/SQL> prompt:

U/SQL> import
newudd.ufd

U/SQL> quit

Import the UFD information

./uslqi -u new.udd Update the UDD with the UFD
information

or you can update one table at a time:

./usqli -u new.udd CUSTOMER

./usqli -u new.udd TRANSACTION

Note: You must have Read-Write capability to create UDDs
and import into them.

-e <error_file> Direct error messages to <error_file>.

-i <input_file> Execute the contents of the SQL query file <input_file>.

-o
<output_file>

Direct the query results to <output_file>.

-u <udd_name>
[<tbl_name>]

Update dictionary <udd_name> for, optionally, table
<tbl_name>. See above example under -c, 'Create
dictionary'.

Transoft U/SQL User Guide

126

-x Do not display the U/SQL Engine and Data Source Driver
version information. For example: [Engine v3.00.0002][C-
ISAM v3.00.0001].

<udd_name> Connect to the dictionary name <udd_name>.

-M
<uid>[:<pwd>]

Multiple-tier user connection security. You can supply as
command line input your user name, <uid>, and,
optionally, your password, <pwd>. Refer to the Security
section.

-G
<uid>[:<pwd>]

GRANT and REVOKE user connection security. You can
supply as command line input your user name, <uid>, and,
optionally, your password, <pwd>. If these are the same
as the -M <uid> and <pwd>, then you do not have to enter
them again with the -G switch. Refer to the Security
section.

usqli User Login Security

The usqli utility, supports Multiple-tier user connection security and/or GRANT
and REVOKE user connection security. For full details on how to set up the
security options refer to the Security section.

If Multiple-tier user connection security is in operation then you will be prompted
for username and password login entries, as follows:

./usqli books.udd

Interactive U/SQL Utility.

Copyright (c) Transoft Ltd. 1993-98

Multiple-Tier Security is enabled - login required.

Enter username (jim): jimb

Enter password:

Connected to server: [Engine v3.00.0001][C-ISAM v3.00.0002]

Opened: 'books.udd'

U/SQL>

Note: You are prompted with your UNIX login name as the default username.

If GRANT and REVOKE user connection security is also operational, and your
username and password are the same as for those for Multiple-tier user
connection security, then you are not prompted for a further login. However, if
they are different or only GRANT and REVOKE user connection security is
operational, then you are prompted as follows:

GRANT and REVOKE Security is enabled - login required.

Enter username (jim): jimba

Enter password:

Connected to server: [Engine v3.00.0001][C-ISAM v3.00.0002]

Configure and Use

127

Opened: 'books.udd'

U/SQL>

usqli facilities

If you type 'help' at the U/SQL> prompt, all the commands and their syntax are
displayed as follows:

U/SQL> help

<SQL statement>;
<filename>[.sql]
! [<unix command>]
export [delimited|delimited2]
export [delimited|delimited2] <table> [<where clause>]
import <filename>
help
rev
info <table>
output [<filename>]
quit
start <filename>[.sql]
tabs
cols
scols
types
stats
set delimited [0|1|2]
showplan [0|1]

Some of these commands are for debugging purposes and must only be used if
directed to do so by the customer support service. Additional commands may be
added in the future. Refer to the server based README file to ascertain whether
new facilities have been added. See the Installation & Licensing section for details
on displaying or printing the README file. Alternatively, refer to the Release
Notice in the U/SQL Client software.

Each command is entered at the U/SQL> prompt. Taking each of the commands
in turn:

<SQL statement>; Most SQL syntax can be entered, for example:

U/SQL> select * from customer;

Note:

o Multiple lines can be entered.

o All SQL statements must end with a semicolon
(;).

o The SQL syntax can include, in addition to the
SELECT statement, INSERT, UPDATE and
DELETE verbs.

o GRANT & REVOKE privileges syntax is
supported.

o The SQL Transaction Processing syntax (for
select Data Sources) is supported. See the
section Transaction Processing Syntax.

Transoft U/SQL User Guide

128

o Any output goes to the current setting of
'output'; see the output command below.

o Refer to the Advanced Use of U/SQL Adapters
section, for examples of SQL syntax.

<filename> It is possible to prepare SQL queries in a text file with
an '.sql' extension. For instance, newquery.sql could
contain the query:

select * from customer;

This query can then be run by entering the file name
(without the '.sql' extension):

U/SQL> newquery

The contents of the file is displayed and confirmation to
continue is requested before the query is executed.

! <unix command> Any UNIX command may be executed.

export [delimited]

export [delimited]
<table> [<where
clause>]

The export command is normally used with COBOL
data sources to export the UDD table(s) as a textural
representation. The [delimited] option creates the
exported text as quoted comma delimited, that is
entries are "quoted" and separated by commas, rather
than output in a fixed tabular format. The quoted
comma format is much more compact and can be
easier to manage for very large dictionaries.

Alternatively, you can use the set delimited
[0|1|2]command to set delimited on/off, see below.
The results of export are output to the current setting
of output; see the output command below.

The export command can also be used to export the
physical data - it is not just internal UDD definition files
which may be exported.

See the section Using usqli to Export and Import your
UDD, below.

help Provides the current list of available commands.

import <filename> The import command is used to import a textual file of
UFD components into a UDD. See the section Using
usqli to Export and Import your UDD, below.

info <table> Prints the CREATE TABLE and CREATE INDEX
statements for the <table> to the current setting of
output.

output
[<filename>]

Changes the current output to the named file or
device. If no filename is given all output will be to the
screen. If you enter the name of an existing file, you
will be asked to confirm that it can be overwritten.

quit Exits usqli. No semi-colon after quit is required.

rev This command displays the revision of the U/SQL
Engine and the Data Source Driver. For example:

Configure and Use

129

[Engine v3.00.0003][C-ISAM v3.00.0001]

set delimited
[0|1|2]

This command sets and configures the delimiter for an
export command (see export above). 0 uses space-
padding, 1 surrounds all data in double quotes (") and
separates fields with a comma, while 2 does not quote
the data but uses pipe (|) delimiters. Any of these
formats may be imported without setting any delimited
(usqli will detect which is being used automatically).

showplan <value> The query plan, generated by the U/SQL Server engine
for each SQL statement can be viewed in its simple
form by entering "showplan 1". The query plan is
displayed prior to query execution. To switch this off
again use "showplan 0". Alternatively, if a query plan is
desired without actually executing the query,
"showplan 5" will switch query execution off but still
give back a query plan. This is useful during
development of complex queries so that the query plan
can be retrieved quickly. An explanation of the query
planner is detailed in the The Query Planner section.

This facility is 'turned off' by entering showplan 0.

start
<filename>[.sql]

The commands in the <filename> are executed
without prompts. The '.sql' extension is optional.

Using usqli to query the data definitions within a UDD

Note: The INFO command is usually sufficient for most requirements to
determine how a table is structured. The following commands are included for
completeness, and are mostly present to simulate how an external application
would request 'metadata' information.

tabs The tabs command lists tables in the database. It asks for Owner,
Table Name, and Table Type in turn. A pattern (including % as a wild
card, for example, CUST%R matches CUSTOMER) may be used. It
then displays a list of tables which match. Table Type is one of
"TABLE" (data table), "SYSTEM TABLE" (internal UDD table) or "VIEW"
(read-only view). Entering nothing matches all possibilities, as does
entering "%" for any of the categories. To get a list of all data tables,
press the RETURN key through both Owner and Table Name, and
enter TABLE for Table Type, and in the books database the following is
displayed:

U/SQL> tabs

Owner:
Table Name:
Table Type: TABLE

TABLE_OWNER TABLE_NAME TABLE_TYPE
----------- ---------- ----------
dba BUDGET TABLE
dba CUSTOMER TABLE

dba OLINE TABLE
dba ORDERS TABLE
dba SALEHIST TABLE

Transoft U/SQL User Guide

130

dba STOCK TABLE
6 records retrieved

The tabs command returns the same values as the SQLTables ODBC
function call.

cols The cols command lists columns in the database. It asks for Owner,
Table Name, and Column Name in turn. A pattern (including % as a
wild card, for example, CUST%R matches CUSTOMER) may be used.
It then displays a list of matching columns. Entering nothing matches
all possibilities, as does entering "%" for any of the items. To get a list
of all fields within the CUSTOMER table, for example, enter RETURN
for Owner, "CUSTOMER" for Table Name, and RETURN for Column
Name. In the books database the following is displayed:

U/SQL> cols

Owner:

Table Name: CUSTOMER
Column Name:
TABLE_OWNER TABLE_NAME COLUMN_NAME DATA_TYPE
 PRECISION
----------- ---------- ----------- ---------

dba CUSTOMER CUSTCODE 1
 4

dba CUSTOMER CUST_NAME 1
 30
dba CUSTOMER CUST_REGION 1
 6

3 records retrieved

The cols command returns the same values as the SQLColumns
ODBC function call.

scols The scols command lists "special columns", which are those which are
either unique record identifiers (such as primary keys) or items which
are automatically updated whenever a record is amended (U/SQL has
none of these). It will ask for Owner, Table Name, and Type in turn. A
pattern (including % as a wild card, for example, CUST%R matches
CUSTOMER) may be used. The Type must be 1 when connected to a
U/SQL database, which is a request for the best unique row identifier
for the table (such as the primary key or a row ID field). Entering
nothing for Owner or Table Name matches all possibilities, as does
entering "%" for either of those items. To find out the best unique
identifier for the CUSTOMER table in the books database, enter
RETURN for Owner, CUSTOMER for Table Name, and 1 for Type:

Owner:
Table Name: CUSTOMER
Type: 1

COLUMN_NAME DATA_TYPE PRECISION
 LENGTH SCALE
----------- --------- --------- -----
- -----

CUSTCODE 1 4 4
 0
1 records retrieved

The scols command returns the same values as the

Configure and Use

131

SQLSpecialColumns ODBC function call.

types The types command lists all the possible data types supported by
U/SQL. It prompts for a value. If the value is given, the type details
matching that value are listed, otherwise all types are listed. For
example:

U/SQL> types

Type:
TYPE_NAME DATA_TYPE
--------- ---------
CHAR 1

NUMERIC 2
DECIMAL 3
LONG 4
SHORT 5

DOUBLE 8
DATE 9
7 records retrieved

The types command returns a summary of the information of the
SQLGetTypeInfo ODBC function call.

stats The stats command lists tables and indices in the database. It asks
for Owner and Table Name. A pattern (including % as a wild card, for
example, CUST%R matches CUSTOMER) may be used. It then
displays a list of tables and index-parts which match. Entering nothing
matches all possibilities, as does entering "%" for any of the items. To
get a list of the indices within the CUSTOMER table, for example,
enter RETURN for Owner and "CUSTOMER" for Table Name. In the
books database the following is displayed:

Owner:
Table Name: CUSTOMER
TABLE_NAME NON_UNIQUE INDEX_NAME TYPE SEQ_IN_INDEX COLUMN_NAME
 CARDINALITY
---------- -------------------- ---- ------------ ------------

CUSTOMER 0 CUSTOMER_IX001 3 1 CUSTCODE
 1000
CUSTOMER NULL NULL 0 NULL NULL
 1000
2 records retrieved

This lists the basic table as having 1000 rows, and there being a
single index, called CUSTOMER_IX001, which is unique and contains
the field CUSTCODE. This command returns the same values as the
SQLStatistics ODBC function call.

Using usqli to export and import your UDD

The usqli export command is normally used with COBOL data sources to export
the UDD to a text file. See the section Exporting and Importing your UDD.

You can selectively export as the full usqli command implies:

export or export <table> [<where clause>]

Transoft U/SQL User Guide

132

The usqli import command is used to import a text file of UFD components into a
UDD. See the Modifying a UDD section.

Note: For both COBOL and non-COBOL dictionaries, it is possible to use the
export facility of usqli.

If you have activated GRANT and REVOKE security, then there are restrictions on
Exporting and Importing.

Configure and Use

133

JDBC Client

JDBC Driver support

U/SQL 3.10.400 and above provide support for the JDBC Driver. To use the
JDBC driver, take the following steps:

1. The JDBC driver td.jar is located in the jdbc subdirectory of the root
directory of the U/SQL Client/Server Installation CD. Copy this file into a
directory of your choice, for example, C:/my_directory.

2. Include the full pathname of the JDBC driver, for example,
C:/my_directory/td.jar in the classpath.

3. The utility jusql.jar is also located in the jdbc subdirectory of the root
directory of the U/SQL Installation CD. Copy this file into a directory of
your choice, for example, C:/my_directory2.

4. Include the full pathname of the jusql.jar utility, for example,
C:/my_directory2/jusql.jar in the classpath.

5. Run "java jusql".

URLs take the form:

"jdbc:transoft://server_name:port/udd_name"

For example:

"jdbc:transoft://sco_os:7000/books.udd".

The driver name is jdbc.transoft.Driver.

Transoft U/SQL User Guide

134

INI Directives

ODBC.INI Directives

The ODBC.INI directives determine how Single-tier U/SQL operates.

When Windows applications access a specific data source through ODBC, they do
so by making calls to the ODBC API. This is implemented by Microsoft as a
Dynamic Linked Library (DLL) and referred to as the Microsoft ODBC Driver
Manager. The ODBC32.DLL, after performing some basic parameter and function
sequence checking, then redirects the ODBC function call to the appropriate
ODBC driver, Single-tier U/SQL TSENG32.DLL.

The Driver Manager determines the name and location of the correct ODBC Driver
from the Data Source Name (DSN) given by the ODBC-enabled application and
from information in the ODBC.INI directive settings.

Other directives control and configure the U/SQL system to interface better with
the client application(s) being used.

Where the ODBC.INI Directives Reside

On Windows 95/98 and Windows NT or Windows 2000 the ODBC.INI directives
are placed in the Windows Registry folder HKEY_CURRENT_USER \ Software
\ ODBC \ ODBC.INI. This folder contains subfolders for each Section Name
containing the relevant directive settings.

Note: It is recommended that you do not use the Registry editor (regedit for
Windows 95/98; regedt32 for Windows NT and Windows 2000), to add or modify
entries as it is possible to make mistakes; use the U/SQL Administrator instead.

Some newer applications look for System data sources (requiring Microsoft's
ODBC 3.0 or later to be installed) rather than User data sources. System data
source are 'seen' by all users accessing the machine, while User data sources are
only 'seen' by the user who created them. In general, if a System data source has
been setup any application should be able to use this data source. However, you
may need to set up both System and User data sources for differing ODBC-
enabled applications you are running.

A System data source is separately set up and configured in exactly the same
way as a User data source, except that its directives are held in a different part of
the Registry. Whereas the User data sources are held in the folder
'HKEY_CURRENT_USER', as detailed above, the System data sources are held in
'HKEY_LOCAL_MACHINE' folder. Refer to the section System & User Data
Sources.

ODBC.INI Directives

U/SQL requires certain ODBC.INI directive settings that include:

�� The name of the data source you want to connect to which, in the case of
U/SQL, is usually the name of the UDD.

�� The name of the ODBC driver to use which, for Single-tier U/SQL, is
TSENG32.DLL.

Configure and Use

135

�� The name of the Data Source Driver(s), for ACUCOBOL this is
TSACU32.DLL and Micro Focus COBOL this is TSMF32.DLL.

�� The name and path of the UDD.

�� Other optional entries.

There are three Section Names containing the directives:

�� [Transoft U/SQL Configuration]

This Section Name defines the global settings for all data sources.

�� [Transoft U/SQL Defaults]

This Section Name defines the default directives for all data sources unless
overridden in individual data source section(s), below.

�� [<Data_source_name>]

This Section Name is the name of a specific data source, for example,
<Data_source_name> could be 'booksw32.udd' (the '.udd' extension is
not mandatory). There can be any number of data source entries in
ODBC.INI settings, describing different applications you may wish to
connect to, or different views of the same application.

The following sections detail the directives that can be set in each of the three
Section Names in the ODBC.INI Registry folders:

�� [Transoft U/SQL Configuration] Section

�� [Transoft U/SQL Defaults] Section

�� [<Data_source_name>] Section.

Transoft U/SQL User Guide

136

UNIX Client-Side Directives

When using a UNIX client, either a program or usqli, it is necessary to provide
information about the server and port the server would be running on. usqli uses
the file usqlsd.ini, and looks up DefaultServer= and DefaultPort=, or the
Server= and Port= lines from the data source section if this is provided.

For example:

usqlsd.ini

[configuration settings]

defaultserver=otherserver

port=7000

[books.udd]

server=myserver

port=7001

Any attempt to connect to books.udd would go to myserver on port 7001,

whereas any other UDD would be looked for on otherserver on port 7000.

For programs, this information is instead contained within a file called ODBC.INI,
which only has UDD names (no "configuration settings" section) so all UDDs being
connected to must be listed within this file. It is permissible to change the name
of this file by setting the environment variable ODBC_INI to any file name
required.

Setting up this file is not necessary on Windows environments because the ODBC
Administrator stores all the server and port information.

Configure and Use

137

Configuration Section

In Single-Tier systems there is no Configuration Section of INI directives.

For Multi-Tier systems on Windows, the Configuration Section is amended from
within the U/SQL Service Manager by selecting the Configuration Settings tree
element in the left-hand pane under the chosen server.

For Multi-Tier systems on UNIX, either use the serv_setup.sh script or edit the
usqlsd.ini file directly and edit settings under the [Configuration Settings]
header.

The Configuration Section defines the global settings for all data sources. The
section can contain any or all of the following directives:

NewDictionaryDir This defines the directory where new dictionaries
will be created. The default is the directory where
the software was installed. For example:

NewDictionaryDir=C:\Program Files\USQLC

LogFileDir=C:\TEMP The directory path where the log file will be created.
This default entry is automatically created at the
time of installation. The log file is USQLCS.LOG.

LogLevel=0 This defines the message log level. This default
entry (0) is automatically created at the time of
installation. See the USQLCS.LOG File and Log
Levels section.

MsgFileDir This defines the path to the error message file
USQLCS.MSG. This default entry is automatically
created at the time of installation. For example:

MsgFileDir=C:\WINDOWS\SYSTEM\

ODBCVer=01.00 U/SQL Revision 3.00 is ODBC Revision 2 compliant.
This directive can be set to inform any ODBC-
enabled product that U/SQL is an ODBC Revision 1
Driver.

Note: Only use this setting if you wish the ODBC-
enabled product to restrict its call interface to the
ODBC Revision 1 specification.

CacheNumPages=n This optional directive determines the size of the
buffer pool cache (in pages) that manages the UDD.
The default is 256 pages. If you have a large UDD
there may be benefit in increasing this value.

CachePageSize=n This optional directive determines the maximum
size of the row that can be created in any
temporary table, for example, due to the need to
sort the results set. The value of 'n' is specified in K

Transoft U/SQL User Guide

138

(1024) bytes, and has a default value of 2 and the
minimum is 2. It should only be modified if you
receive the error message "Table row length
exceeds cache page size".

Num2Char=R/L Determines is a number is to be stored in a string
variable as [R]ight or [L]eft (the default) justified.
This directive can also be specified in the [Data
Source Defaults] section, or under the DSN.

TempTablePages=n If U/SQL runs out of temporary file space this can
be increased to allow more. The default is 512.

FHUserName,
FHPassword, FHREDIR

Override values to allow multiple fileshares and
fileshare security for Micro Focus Net Express.

Licence=<filename>
or
License=<filename>

Sets the location of the license file. This is
automatically entered when the licence utility is run,
so it must not be amended.

MaxDSD=n UNIX only. Allows more than the default of 250
DSNs to be set up within the usqlsd.ini file.

ConversionCheck Defaults to Y. If set to N conversion errors appear
only as warnings in the log file, rather than errors.

NumericDefaultDouble COBOL only. Defaults to N. If set to Y decimal-type
numerics become "double" type in U/SQL rather
than "numeric" - this can help MS Access to read
the data if using a "," as the decimal separator.

CHECKPK Micro Focus COBOL and U/FOS only. Defaults to Y.
If set to N then U/SQL will allow updating of the
primary key value.

Note: On many systems this will fail at the Micro
Focus COBOL level, so it must not be changed
unless testing has been carried out to prove that
the version of Micro Focus COBOL being used
supports amendment of primary key values.

DefaultServer UNIX Only. Used only by usqli.

DefaultPort UNIX Only. Used only by usqli.

MFISAM Micro Focus COBOL only. Some versions of Micro
Focus COBOL do not support op code 6 (file
enquiry). If set to N this directive prevents U/SQL

Configure and Use

139

from using this call to determine the physical file
structure. Defaults to Y.

TransLogDir C-ISAM only. Must be set in order for transaction
processing to operate.

UDDVER If set to 2, creation of a new UDD will generate a
type-2 UDD, which has a second level of index (the
start of each page of data appears in a separate
index). This speeds up access in large UDD's.
Recommended only when hundreds of tables are
present within a single UDD. Set to 1 by default.

SubSeparator By default the substitution list data item is
separated by ";" or ":", or "," on UNIX. However, if
any of those characters are to be used in a
pathname, it is necessary to amend the substitution
list separator accordingly. This directive must be set
to a series of characters which will be treated as
separators, either using the literal character or its
hex value.

For example, to set "!" and ";" to be separators, set
SubSeparator=;!, or SubSeparator=0x3b0x21
(! is hex 0x21 and ; is hex 0x3b).

COMPSTORAGE U/FOS Only. Allows amendment to the way COMP
values are stored. See the U/FOS Reference Manual
for details.

ShowLogicallyDeleted U/FOS Only. Defaults to N. Display records marked
as logically deleted as if they were 'live'.

SetOptionWarn Defaults to N. If set to Y any errors produced by
client programs requesting SQLGetInfo options that
are not supported by U/SQL will generate a warning
and return success to the calling application, rather
than the default error.

Transoft U/SQL User Guide

140

Data Source Defaults Section

The Data Source Defaults Section defines the default directives for all data
sources unless overridden in the individual data source section(s).

In Single-Tier systems there is no Data Source Defaults Section of INI
directives.

For Multi-Tier systems on Windows, the Data Source Defaults Section is
amended from within the U/SQL Service Manager by selecting the Data Source
Defaults tree element in the left-hand pane under the chosen server.

For Multi-Tier systems on UNIX, either use the serv_setup.sh script or edit the
usqlsd.ini file directly and edit settings under the [Data Source Defaults]
header.

This section contains default values, which can be overridden by setting the
directive within the actual data source. This section can contain any or all of the
following directives:

Dictionary This is the name and path of the UDD
you defined when you set it up. For the
Books Demonstration, the dictionary is
BOOKSW.UDD in the path shown. The

'.UDD' extension is mandatory. For
example:

Dictionary=C:\Program
Files\BOOKDEMO\DATA\BOOKSW.UDD

Directory This optional entry defines the U/SQL
Server's working directory. The default is
as above.

If this directive is not specified, then the
working directory is the directory where
the UDD is located.

Directory=C:\Program Files\USQLC

OpenExclusive={Yes|No} This optional entry is for Micro Focus
COBOL only. If set to 'Yes', it ensures
that all files are opened exclusively which
is likely to improve I/O performance.
However, care must be taken in its use.
If you have multiple records types in the
same physical file then U/SQL may need
to open the same file more than once,
and with OpenExclusive set to 'Yes',
you get the error message:

Error Code: 54 - Requested file
locked.

Note: You must ensure that when
creating or modifying a UDD using the
U/SQL Manager that OpenExclusive is
NOT set to 'Yes'.

Configure and Use

141

ReadOnly={Yes|No} This optional entry, set to 'Yes' if you
wish no INSERTs, UPDATEs or DELETEs
to be allowed on a global basis to the
data files.

If an attempt is made to INSERT,
UPDATE or DELETE read-only data
sources, the following message is
displayed:

Error - Attempt to update read-only
database.

Note: Read-only can also be set by
licensing.

SearchList This is an optional entry. Each directory
in the list is separated by the default
separation characters (';', ':' or ',' on
UNIX, ';' or ':' on Windows) unless
overridden by the SubSeparator directive.
For each file to be opened, an attempt is
made first in the current working
directory, which is the directory the UDD
is located in unless changed by the
Directory= directive (see above). If the
file does not exist there, an attempt to
open the file will be made in each
directory in the search list in turn, until
the file is found or the search list is
exhausted.

When creating your UDD, you can specify
each physical file either as just its file
name to be found in one of the searchlist
directories, or with an absolute path. The
former option is preferable as it provides
greater flexibility.

When using COBOL dictionaries, in order
to search along paths specified by the
SearchList entry for a given file, you
must ensure that there is no directory
path specified within the UDD for that
table. You can check this by loading the
U/SQL Manager, opening the required
dictionary and table, and examining the
Directory entry field. If a path exists in
this field, simply delete it and close the
table.

Instead of using the U/SQL Manager, to
ensure all tables have no individual paths
specified, perform the following SQL
statement in the Interactive U/SQL
utility, Win U/SQLi:

update cobol_table set pathid=0;

Example setting:

Transoft U/SQL User Guide

142

SearchList=C:\DATA\;F:\NEWDATA\

FileNamePrefix=AA

FileNameSuffix=ZZ

These are optional entries. The Prefix and
Suffix entries, if present, are added to
the beginning and end respectively of ALL
physical file names contained in the UDD.
For example, suppose there is a file in
the UDD called CUST, then the physical
file that U/SQL will attempt to open will
be, with the above Prefix and Suffix,
AACUSTZZ.

Substitution=??=XY;##=01 This is an optional entry and is used to
distinguish between multiple companies
using the same UDD; refer to the Multi-
company Support section.

Each substitution in the list is separated
by a semi-colon ';'. These substitutions
are applied, in the order listed, to the full
pathname of a file before the file is
opened. This applies to any path specified
for a file including those defined by the
Searchlist directive.

Each element in the substitution list is of
the form string1=string2 where string1 is
the text to be replaced (before) and
string2 is its replacement (after). For
example, if a filename is stored in the
data dictionary as "??LEDGER.##" and
the substitution entry is as above, the
filename to be opened would be
"XYLEDGER.01".

The length of the text to be replaced
(before) does not have to be the same
length as the replacement string (after).

Note: FileNamePrefix and
FileNameSuffix are applied to the file
name before any Substitutions. Thus,
FileNamePrefix and FileNameSuffix
can include substitution characters.

FixedDateOffset=nn This optional directive allows you to
define a 'cut-off' year below which dates
with two digit years are considered to be
20nn. The value of 'nn' may be 0 to 99.
Assume, nn=30, then any year 0 to 29 is
considered 2000 to 2029 and any year 30
to 99 is considered to be 1930 to 1999.

Before using this directive you should
check that existing date data does not
come into the range prior to the offset
date. Obviously, setting the directive will

Configure and Use

143

'move' any such dates forward by 100
years! To check whether any records
exist with dates in this range issue the
following query:

select count(*) from <table> where
<date> <"19nn-1-1"

If the count is zero then no such records
exist.

Note: Illegal dates are treated as NULL
and a warning is written to the log file.

TempDir=C:\TEMP This is an optional entry that specifies the
directory in which any temporary files are
opened. The default is the current
working directory.

The following optional directives specify
foreign character set support. Refer to
the section Foreign Character Set
Support and the text file, tstrans.dat,
found in the U/SQL installation directory,
for example, C:\Program Files\USQLC.

TranslationFile Set this directive to enable translation on
UNIX. For example:

TranslationFile=tstrans.dat

For Windows systems this must be set
using the U/SQL Administrator for Single-
tier or the U/SQL Service Manager for
Multiple-tier. See Foreign Character
Support for details.

HideSystemTables=Y Even when a third-party application asks
for system tables to be returned do not
return them. The default is N.

TrueSFU=Y Allow multiple locks within Select-For-
Update statements. The default is N.

StripUnprintable=Y If a single unprintable character is
returned as part of a C-ISAM field this
directive assumes the field is blank. The
default is N.

ACUConfigFile=<path>/USQL.CNF This optional entry is for ACUCOBOL DSD
only. It allows you to apply a 'unique' set
of ACU configuration settings specific to
the U/SQL server process. An example
configuration file, USQL.CNF

Transoft U/SQL User Guide

144

V-STRIP-DOT-EXTENSION 0

�� The normal performance of U/SQL
will not be affected if the directive
is not set

�� This USQL ACU configuration file
may contain ACU settings that
affect the functioning of the file
handler

�� The USQL-ACU configuration file
does not mirror the ACU
configuration file typically used by
a COBOL application.

�� This new file should only contain
the variables required by USQL to
load the ACU file handler (a
selective approach is therefore
advised when populating your
U/SQL ACU configuration file).

Configurable variables that can be set are
defined in the ACUCobol Vision
FileHandler API documentation.

Configure and Use

145

Data Source Section

In Single-tier systems set the Data Source Section through the Advanced tab
of the U/SQL Administrator.

For Multiple-tier systems on Windows, the Data Source Section is amended
from within the U/SQL Service Manager by selecting the data source name tree
element in the left-hand pane under the chosen server.

For Multiple-tier systems on UNIX, either use the serv_setup.sh script or edit
the usqlsd.ini file directly and edit settings under the data source name
([<data_source_name>.udd]) header.

This section may contain any of the entries described in the Data Source Defaults
Section, and they will override the default values.

Transoft U/SQL User Guide

146

Foreign Character Set Support

U/SQL supports foreign character set mapping via a map file. This map file is set
using the U/SQL Administrator for Single-tier systems, the U/SQL Service
Manager for Multiple-tier Windows systems, or via the usqlsd.ini file for UNIX
Multiple-tier systems. See the directives section for how to set the TranslationFile
directive.

The tstrans.dat file which is installed with U/SQL contains the default mapping,
and may be amended as detailed in the comments contained within the file.

You can browse for the name of your translation table file when the translation
facility is selected within the ODBC Setup when using the U/SQL Administrator.
The default TSTRANS.DAT translation table file is supplied in the
WINDOWS\SYSTEM directory. This skeleton file needs to be modified to satisfy
your particular foreign character set requirements.

In the U/SQL Client software installation directory there are example translation
table files for German, Danish and Swedish, and others will follow, which are
identified by having a '.TRN' extension.

Note:

�� All data, including SQL statements, are filtered through the translation
table file. Hence, special care must be taken not to map characters in the
A-Z, a-z, 0-9 range or some of the special characters, such as '{' and '}',
since this may cause queries to fail. For example, if S is mapped to X, all
SELECT... statements would fail and the '{' and '}' characters are used as
SQL escape characters, in cases such as ...{oj......}.

�� An inverse translation table is automatically setup to ensure the correct
mapping takes place for INSERTs and UPDATEs.

�� The translation and inverse translation tables are printed to the log file if
the directive LogLevel=4, see the The USQLCS.LOG File and Log Levels
section.

Configure and Use

147

Advanced Directives

AllowInvalidDates=N Do not check that a date has valid values, but
let through such dates as 00-00-0000 or
equivalents.

AlternativeIndex=N If set to Y this enables overlapping index-use.
This is done for C-ISAM and COBOL at the
update dictionary stage, when a file
UDDALTIND is populated. (If not present,
recreate the dictionary to enable it). During
update all indices are examined to see if there
are overlapping fields which could be used to
map onto the existing index. For example, if in
CUSTOMER a field CUSTSHORT was created at
offset 0 with length 2, it could be used as a key
field by mapping it onto CUSTCODE. Any
number of fields can be used to overlay the
index as long as they are contiguous - when an
index is split into sections around the record
this option will not pick them up as valid since
the logic of reassembling the key field would
become too complex.

AutoCorrectIndices=Y Enables MF, ACU and C-ISAM to fix the order of
indices behind the scenes, matching on the
basis of field offsets and lengths. Note that if
an index cannot be matched an error is
generated. Any amendment to order is logged
as a DBG message in the logfile. This will not
affect the index order in an INFO command,
nor will the index number reported in a query
plan be affected.

AutoTransProc=N Activates transaction processing. NOTE must
be set to Y if transactions are to be used. Also
must not be set in Micro Focus COBOL when
Fileshare is not running.

BaseCalcDate=0 If set to a value, that value becomes the base
date for Julian date calculations within column
expressions, thus enabling complex date
calculations. Note that for the case where the
customer was using 999999-DATE, the Julian
value was set to 584388.

BBCRAMDGBB=" ,-." For BB, changes the compression characters
for DG compression methods.

Transoft U/SQL User Guide

148

BBCRAMSDOS=" /,." For BB, changes the compression characters
for SDOS compression methods.

BBGLOBLOCK Sets the file name to be used for a list of global
files, that is, ones where the BBPREFIX does
not apply.

BBJULIANFLAGS The BBASIC ISAM DSD uses the same Julian
date libraries as the Universal Business
Language (U/BL) interpreter. The INI directive
BBJULIANFLAGS has been introduced into the
BBASIC ISAM DSD to reflect the same
functionality that can now be found in U/BL Rev
2.10.

BBLASTKEY This directive controls the way new duplicate
records are added to duplicate indices in the
ALPHA Release BB ISAM DSD. If set to Y,
duplicate keys are added after the last entry
otherwise they are added before the first entry.

BBLOCKNAME This sets the name used for the lock. 0
(default) is the logical file name (lfname from
BB_TABLE). 1 is the table name (tabname from
BB_TABLE). 2 is the physical file name
(dbname from BB_LOGFILE).

BBLOCKTYPE This sets the locking method used for locking
BB ISAM records. If BBLARGEFILES is used,
this is always set to UBL regardless of the INI
directive.

BBPREFIX This sets the prefix for lock names within BB.

BecomeUser=N If set to Y, the U/SQL Server changes its user-
ID and group-ID to that of the user. This
ensures that operating system file permissions
take effect. If set to N, the username and
password are still validated, but the U/SQL
Server does not change user.

CacheTables=N When set to Y, the UDD tables structures are
stored on the connection handle between
statements, thus speeding up large numbers of
small queries on the same table within a single
connection. For example, multiple inserts on
the same file.

Configure and Use

149

ConversionCheck=Y If set to Y, any data conversion errors (such as
numeric overflow when converting an integer
into a smallint) will generate ODBC errors. If
set to N a message will be written to the log
file, but processing will continue.

CopyParams Set to Y to cause parameter buffers to be
reallocated. When SQLBindParameter is
called to set a parameter value the calling app
normally allocates the buffer and passes it to
our driver. Setting this directive to Y causes us
to allocate a new buffer and copy the value
there. This was introduced because
Powerbuilder was writing over the original
buffer causing the parameter to be invalid
during the fetch.

CreateHJEUDD=N If set to Y, any new UDD created will include
the qualifier field in UDDTABLES and will
include the UDDEXTSRC table, and will be
enabled (assuming licensing requirements are
met) for the HJE.

DecimalRound=N Rounds decimal numbers in C-ISAM, so
69.599999 would become 69.60 if loaded into
a field with ndec=2.

DefaultOwner In the HJE, this directive controls the default
owner field to be used when no qualifier is
entered, that is, when a table is referenced just
by the table name. So, "select * from
customer" would be amended to "select *
from
DefaultQualifier.DefaultOwner.customer".

DefaultQualifier In the HJE, this directive controls the default
qualifier field to be used when no qualifier is
entered, that is, when a table is referenced just
by the table name, or when only the owner is
given. So, "select * from customer" would
be amended to "select * from

DefaultQualifier.DefaultOwner.customer".
Also, "select * from owner.customer" would
become "select * from
DefaultQualifier.owner.customer".

DefaultRows=1000 Specifies default number of rows if nrows is not
set in UDDTABLES

Transoft U/SQL User Guide

150

DisableAPI= Specify the name of an ODBC API function or a
semi-colon delimited list of functions to disable.
When disabled SQLGetFunctions will say that
this particular API function or functions is not
supported by our driver. This was introduced to
allow a customer to get his application working
in the same way as with an older version of our
driver. The problem was that we introduced the
function SQLDescribeParam, which we
previously didn't support. Now it is available,
Powerbuilder uses a completely different
method of retrieving data and this highlighted
various problems.

DistinctJump=Y When performing a query such as "select
distinct year from salehist", the index for
salehist will be used and once the first year-
value is obtained, the cursor will jump directly
to the next year value, not scan through the
file.

DivZeroRtn=0

EnableAPI= Some ODBC API functions are disabled by
default (Just SQLMoreResults so far). Use this
directive to enable them. See DisableAPI for
the correct syntax.

Fixed6Char Allows setting of the 'default' character with C-
ISAM fixed6char fields. This character, defined
as a two-character hex value (20 for space) will
be used instead of zeroes.

FixedLengthCharType=N If set to Y, all CHAR-fields will be padded with
spaces. Without this, all CHAR-type fields will
be space-stripped.

ForceSimilarIndex=N If set to Y, the following condition causes a
change of index to be used for the query plan:
If two tables exist in the query T1 and T2 such
that T2 is using an index and T1 is scanning
sequentially, and T2 is using a variable from T1
to read, and this variable being used forms
part of an index in T1, then change to read
along that index. This is designed to speed up
reads so that the rows for T2 will be,
approximately at least, fed to it in the correct
order.

HJEShowplan=N If set to Y, the HJE does not open connections
until execute-time, allowing query plans to be

Configure and Use

151

produced without requiring all the remote data
sources to be set up.

IndexStats=N If set to Y, Indexstats allows use of
UDDSTATS to determine choice of index. If
UDDSTATS has not been set up, this will have
no effect. If UDDSTATS has been populated,
information there will be used to determine
costing information for each index and part
thereof. For example, if a table has 1000 rows
and an index ABC, and there are 500 distinct
AB's, then having AB will be costed as
returning, on average, 2 rows (1000/500).

Can also be set to P, meaning partial, and A
for All. These differ from N and Y respectively
in that they turn on the new index costing
algorithm. Thus:

N - use old method and no stats

P - use new method and no stats

Y - use stats when available or old method

A - use stats when available or new method.

The new index analysis method takes into
account ORDER BY and DISTINCT statements,
and is simpler and (hopefully) more accurate.

LeadingZero=Y If set to Y, leave leading 0 on a decimal 0.05
number. If set to N, remove the 0.

LocalQualifier In the HJE, this directive allows explicit
reference to a local table. If a table is
referenced with this qualifier, the table will be
regarded as local, so "select * from
LocalQualifier.owner.customer" would be
the equivalent of "select * from
owner.customer". Note that with local tables
the owner field is ignored, so a local qualifier is
all that is required.

LockAction=0 Specifies whether, on failure to get a lock, the
server does nothing other than report the error
(default setting of 0), or drops all locks on
tables in this query (set to 1) or drops all
outstanding locks (a setting of 2).

LockTimeout=-1 Determines the number of seconds that U/SQL
will wait for a locked record to become
available. This is done by sleeping for one
second between attempts and then retrying. If
set to -1 (the default) U/SQL will wait forever.
If set to 0, then any locked record will be

Transoft U/SQL User Guide

152

reported instantly.

MaxPlans=40000 Specifies how many attempts the plan
optimiser will make before giving up. 40000 is
every combination of 8 tables, and beyond that
the time taken begins to become unpleasant. If
this number of plans have been taken, the
likely cause is that the user is testing a series
of tables, all identical, so an arbitrary choice is
as good as anything. If any real-life situation
occurs where more plans are needed, simply
increase the number.

MaxRows=-1 Specifies how many rows to return by default
from any query. -1 and 0 both represent
infinity, so all rows are returned.

NoDuplicateWarn=N Don't give a warning on duplicate inserts.

NullDates In Sculptor or BB-ISAM if a date is 0, set it to
NULL if this directive is set to Y.

NullUnknown If set to BB-ISAM, NULL values operate as per
the SQL standard, that is, a NULL value counts
as unknown and neither matches, nor does not
match, anything. For example, A=3 and A<>3
will both fail if A is NULL. Only "A is NULL" will
be TRUE.

NUM2CHAR Set to L to left justify string numeric values.

ODBCDLLLib Specifies what directory to add to the
SHLIB_PATH or LD_LIBRARY_PATH to
locate the driver manager (and any subsequent
libraries).

ODBCManager Specifies what name to use for the ODBC
driver manager.

PartialIndex=N If set to Y, the query plan can then include a
second key section from further along the key.
For example, the query "select * from
salehist where year=94 and
custcode='C001'" would normally use year
alone to perform the selection. However, if
there are many customers and only 12 periods
(as is the case) it makes more sense to
perform jumps between 94-1-C001 and 94-2-

Configure and Use

153

C002, and so on, so 12 indexed starts are
made to locations where the potential result
sets will be found.

Qualifier="" If set all table owners will be produced by
concatenating qualifier and owner with the
contents of this string. So if qualifier is set to #
then a table q1.a1.customer can be
referenced as q1#a1.customer, and will
appear in SQLTables() results as being
qualifier=NULL, author="q1#a1",
tablename="customer".

SculptorDelayIndexOpen=N Do not open all the indices associated with a
file when initialising the file, but wait and see
which ones are actually used. When a query is
using several files and they have many indices
each this is required to stop an error -1 being
returned during the query initialisation stage
caused by running out of the maximum 32
'units' available within Sculptor, one of which is
used for each open file or index.

SetInIndexUse=N The use of indices when comparing to a
subquery has been fixed post 300, but this
option, when changed to Y, enables a further
level of index use. With the following query:
'select custcode from customer where custcode
in (select custcode from customer where
custcode like "C0%1")' may be stupid, but is
indicative of the speed improvement. For C001,
the IN clause is satisfied. For C002, it is not.
The next available value is C011, so the outer
query jumps to C011. When C012 is read,
there are no more available values, so the
outer query terminates with no more records.
Thus 4 records have been read rather than all
records in the customer file scanned.

SQL_OUTER_JOINS=F Specifies what value is returned when an ODBC
GetInfo call asks about outer join capabilities.
This has been made configurable because not
all utilities accept F, requiring Y instead to
enable outer joins. Microsoft Excel requires Y.

TxnIsolationLevel=1 If set to 1 (SQL_TXN_READ_UNCOMMITTED),
dirty reads may be carried out, which means
that non-committed rows may be read freely.
If set to 2 (SQL_TXN_READ_COMMITTED),
rows which have outstanding locks on them will
not be readable, and will block the statement
as described under the LockTimeout

Transoft U/SQL User Guide

154

parameter. This is only available within Micro
Focus.

WeekCalculation Set to U, W, V or ODBC. This determines how
week numbers are calculated. In basic terms:

U - starts at week 0 for the first week or part-
week of the year, with the week number
changing to the next week on the Sunday.

W - starts at 0 and changes week number on a
Monday.

V - differs from U only in that the effective
week 0 of this year is amended to be week 53
of the previous year.

ODBC - is exactly like U, but starting from
week 1 rather than from week 0. This is the
default setting.

Configure and Use

155

Validation Rules for Security Directives

Note: The validation of security directives applies only on UNIX.

The directives, Security and SecurityFile are checked during the validation
procedure of the usqlsd.ini file.

Validation Rules

�� The values of the Security and SecurityFile directives for a specific DSD are
based on the following two rules:

o If the directives are defined in the Data Source Defaults section but not
in the specific DSD section then the values in the Data Source Defaults
section are used. For example:

[Data Source Defaults]

Security=None

[books.udd]

Directory=../example

When accessing books.udd the Security setting (Security=None) in the
Data Source Defaults section is applied, so security is not used for this
data source.

o If the directives are defined in both the Data Source Defaults section and
the specific DSD section, then the settings in the DSD section take
precedence and are used.

[Data Source Defaults]

Security=None

[books.udd]

Directory=../example

Security=Host

When accessing books.udd the Security setting (Security=Host) in the
books.udd section takes precedence, so Operating system level security is
used.

�� The validation procedure validates the Configuration Section, the Data
Source Defaults Section and the DSD Section of the current DSD that is
going to be accessed. Any wrong definition in any other section is ignored.
For example:

[Configuration Settings]

DefaultServer=sgpower1

DefaultPort=7002

LogLevel=0

License=/u/dev/banner/usqlcs/general.lic

[Data Source Defaults]

[books.udd]

Directory=../example

Transoft U/SQL User Guide

156

Security=None

[books32.udd]

Dictionary=../example/books.udd

Dirtory=../example

If you are accessing books.udd then the error in the books32.udd section
(Dirtory is a misspelling) is ignored.

�� The directive Security can be set either to ‘Host’ or ‘None’ without setting
any other directive. See example above.

�� Whenever the SecurityFile directive is defined, the directive Security must
be set to ‘Host’. See example below.

�� If the SecurityFile directive is set to ‘*’ for a specific DSD then a User
Access section must be defined for that specific DSD in the usqlsd.ini file.
For example:

[books.udd]

Directory=../example

Security=Host

SecurityFile=*

[books.udd_Access]

jonsmisth=full

Configure and Use

157

COGNOS Impromptu Outer Join Directives

If you are experiencing problems with nested outer joins, the following changes
must be applied to the Impromptu cogdmod.ini file.

Changes needed to support the Transoft ODBC driver

[Exceptions Joins DRIVER-TSODBC32.DLL]

Left_Outer=T

nested_Outer=T

One_Outer=F

Optnl_Tbl_restrict=F

[Exceptions Joins DRIVER-TSODBC.DLL]

Left_Outer=T

nested_Outer=T

One_Outer=F

Optnl_Tbl_restrict=F

These entries were supplied by Cognos Ltd.

Transoft U/SQL User Guide

158

The USQLCS.LOG File and Error Reporting

The USQLCS.LOG File and Log Levels

U/SQL Single and Multiple-tier logs various levels of messages to the log file
USQLCS.LOG. New information is always appended to an existing USQLCS.LOG
file.

The log file can be queried using the U/SQL Client based Interactive U/SQL utility,
Win U/SQLi. Refer to the section How to Query the Log File.

Single-tier

On Single-tier the log file directory and the log level are controlled from the
U/SQL Administrator using the Advanced Options setting. LogFileDir and
LogLevel both appear on installation as blank, but default to C:\temp and 0
respectively.

Multiple-tier on Windows

The log file directory and the log level are set using the U/SQL Service Manager.
They appear within the Configuration Settings section, being common across
all data sources. LogFileDir defaults to the installation directory of U/SQL, while
LogLevel defaults to 0.

Multi-tier on UNIX

The log file directory and the log level are set within the usqlsd.ini file, either
using the serv_setup.sh script or simply by editing the file directly. The default
settings are:

[Configuration Settings]

LogFileDir=/usr/usqls/bin

LogLevel=0

Note: If you change the entries for LogFileDir or LogLevel then ensure you
stop and re-start the U/SQL Server for these changes to take effect.

Log Levels

There are five logging levels (0-4). For normal usage, it is recommended that
only levels 0 and 1 are used. Do not use higher levels unless explicitly requested
to do so, as these are meant for troubleshooting and debugging. Even at level 2,
the log file will grow very rapidly, and level 4 records at the network messaging
level and can seriously affect performance. The default log level is 0. The
following table describes the types of message logging available:

LogLevel Identifier Type Example

0 ERR Error Cannot open file: CUSTOMER

1 WRN Warning Field length of column NAME exceeds
maximum of 30

2 CON Connection Connect: DSN=books.udd;UID=Admin

Configure and Use

159

3 INF Information SQLExecDirect: SELECT CODE FROM
CUSTOMER

4 DBG Debug [CUSTOMER] -1 002 - isopen

Note: With LogLevel 4 you obtain all the error messages described in the above
section.

For further details on what messages are captured in the log file for each log
level, how you interpret them and how you access the log file, refer to the section
How to Query the Log File.

Log File Messages

Messages are logged according to their message type and the current setting of
LogLevel. For example:

�� If LogLevel has been set to 2, messages of type CON, WRN and ERR are
logged.

�� If LogLevel has been set to 4, messages of all types are logged.

The format of a logged message is as follows:

msg_type: dd/mmm/yy hh:mm:ss login_name pid[src_fname src_lineno]:

[--- errno: errno]

--- msg_txt

where:

msg_type Message type identifier (ERR, WRN, CON, INF, DBG).

dd/mmm/yy Date with an alphabetic month.

hh:mm:ss Time in 24-hour format.

login_name Login username.

pid Process-id.

src_fname Source file name (when msg_type is DBG or LogLevel is 4).

src_lineno Line number within source file (when msg_type is DBG or

LogLevel is 4).

errno ‘C’ language error number. Note that in many cases this will

not be relevant - it is included for the few cases where it is

relevant.

msg_txt Message text.

For example:

Transoft U/SQL User Guide

160

DBG: 10/Sep/97 16:29:56 kernighan 14453 cisam.c 572:

--- [CUSTOMER] 00 100 - iswrite [C016\x00\x00\x00\x00\x00\x00
]

ERR: 10/Sep/97 16:29:56 kernighan 14453 procmsg1.c 271:

--- errno: 0.

--- [C-ISAM](log: 14453-162956) 100: Duplicate key condition
encountered.

DBG: 10/Sep/97 16:29:56 kernighan 14453 objutil.c 74:

--- PostError: State=S1000 Errnum=413 Errmsg=[C-ISAM](log: 14453-
162956) 100: Duplicate key condition encountered.

ERR: 10/Sep/97 16:29:56 kernighan 14453 server.c 59:

--- errno: 0.

--- SQLError: S1000 (413) [Transoft][TSODBC][usqlsd][C-ISAM](log:
14453-162956) 100: Duplicate key condition encountered.

DBG: 10/Sep/97 16:29:56 kernighan 14453 svrmain.c 199:

--- Retn: -1 = SQL_ERROR

The message text (msg_txt) of messages of type DBG tend to be of a fixed
format when originating from within data source drivers. Due to individual data
source characteristics, detailed debug level message logging varies from one data
source to the next.

ACUCOBOL Log File Messages

For the ACUCOBOL data source driver, msg_txt takes on the following form:

--- [data_fname] file_ptr f_errno f_int_errno - fnc_name [rec_buf]

where:

data_fname Data file name.

file_ptr ACUCOBOL file pointer in hexadecimal.

f_errno ACUCOBOL error number of last function called.

f_int_errno ACUCOBOL file system specific error number when f_errno is

set to E_INTERFACE.

fnc_name ACUCOBOL file system interface function name.

rec_buf Contents of data file record buffer. Unprintable characters are

in standard hexadecimal string format: \xhh, where hh is one

or more hexadecimal digits (0…9, a…f).

For example:

DBG: 09/Jul/97 10:35:47 kernighan 162956 acuerror.c 149:

--- [STOCK] 0x51b4b4 00 00 - i_next [005269Concise Guide
to MS-DOS].

Configure and Use

161

Micro Focus COBOL Log File Messages

For the Micro Focus COBOL data source driver, msg_txt takes on the following
form:

--- [data_fname] fcd_ptr file_status - op_code [rec_buf]

where:

data_fname Data file name.

fcd_ptr Micro Focus COBOL FCD (File Control Description) pointer in

hexadecimal.

file_status Micro Focus COBOL file status code.

op_code Micro Focus COBOL file handler operation code.

rec_buf Contents of data file record buffer. Unprintable characters are

in standard hexadecimal string format: \xhh, where hh is one

or more hexadecimal digits (0…9, a…f).

For example:

DBG: 09/Jul/97 10:27:55 kernighan 162956 mffile.c 823:

--- [STOCK] 0x568968 0/0 - MF_READ_SEQ_NO_LOCK
 [005269Concise Guide t].

C-ISAM Log File Messages

For the C-ISAM data source driver, msg_txt takes on the following form:

--- [data_fname] isfd iserrno - fnc_name [rec_buf]

where:

data_fname Data file name.

isfd C-ISAM file descriptor.

iserrno C-ISAM error number.

fnc_name C-ISAM API function name.

rec_buf Contents of data file record buffer. Unprintable characters are

in standard hexadecimal string format: \xhh, where hh is one

or more hexadecimal digits (0…9, a…f).

For example:

Transoft U/SQL User Guide

162

DBG: 09/Jul/97 10:40:29 kernighan 162956 cisam.c 557:

--- [STOCK] 00 000 - isread [005269Concise Guide to MS-DOS
].

How to Query the Log File

The usqlcs.log log file can be queried using the U/SQL Client based Interactive
U/SQL utility, Win U/SQLi. Select this program from the program group.

Select the Log command from the View menu . The Error Log Query dialog box
is displayed:

Select the log information you want to obtain:

�� For a particular Data Source

�� For a particular Username

�� For a Date Range

�� For various Log Message Types (equivalent to the LogLevels)

�� With various Display Fields

Click Execute and Win U/SQLi generates the necessary SQL query to select the
information you have requested and automatically executes the query displaying
the results in the Results window.

The contents of the messages displayed are determined by the data source and
the level of message type selected: refer to the above section.

Configure and Use

163

Error Messages

This section covers the following topics:

�� ODBC Error Handling - A Brief Description

�� U/SQL Error Messages

�� The Error Message File - usqlcs.msg

�� Error Reporting Format

�� SQL Error Messages.

ODBC Error Handling - A Brief Description

ODBC error handling is accomplished by one or more calls to SQLError() when a
previous ODBC function call returns SQL_ERROR to the ODBC-enabled client
application. The client application requests one of three types of error depending
on the type of the previous ODBC function that has failed. It does this by passing
either a NULL or a valid handle for either the environment, connection or
statement handle arguments of SQLError() (see Microsoft ODBC 2.0
Programmer’s Reference and SDK Guide for details). SQLError() then returns an
error message from the top of either the environment, connection or statement
error information stacks. The application continues to call SQLError(), retrieving
successive levels of error information, whilst its return code is SQL_SUCCESS,
and stops when the return code changes to SQL_NO_DATA_FOUND.

Error message text returned by SQLError() can be in one of two formats:

�� For errors that do not occur in a data source:

[vendor_identifier][ODBC_component_identifier](log: log_number)
component_supplied_text

�� For errors that occur in a data source:

[vendor_identifier][ODBC_component_identifier][data_source_identifier]

(log: log_number)data_source_supplied_text

U/SQL Error Messages

U/SQL reports a range of error messages:

�� Some are produced directly by the U/SQL Engine. These can be terse, for
example:

[Transoft][TSODBC] Error State 01004

The SQLSTATE number 01004 means Data truncated, see the section SQL
Error Messages at the end of this chapter for details of these SQLSTATE
codes and messages.

�� Most of the error messages you are likely to encounter are contained in
the message file usqlcs.msg. These are detailed below in the section The
Error Message File - usqlcs.msg.

�� A log level directive, LogLevel, can be set that produces various levels of
messages to the log file, usqlcs.log, that can assist in debugging
particular situations. Refer to the The USQLCS.LOG File and Log Levels

Transoft U/SQL User Guide

164

section.

The Error Message File - usqlcs.msg

Certain error messages are contained in the message file usqlcs.msg and cover
the following sections:

�� Standard messages, for example:

Cannot open file: <file_name>

�� Dictionary maintenance messages

�� Transaction processing messages

�� GRANT and REVOKE security messages

�� Data source driver messages

�� Data source driver messages with file handler error codes.

The last message category is used immediately after file input/output has taken
place, and the message itself is preceded by the file handler (for example, C-
ISAM, Micro Focus COBOL, PRO-ISAM, etc.) error code. Consequently all data
source drivers using usqlcs.msg, include the file handler error code. For
example:

Informix C-ISAM 100: Duplicate key condition encountered.

Micro Focus
COBOL

2/2: Duplicate key condition encountered.

PRO-ISAM 108: Duplicate key condition encountered.

The usqlcs.msg file can be viewed for a complete list of the messages. For
Single-tier, it is found in the WINDOWS\SYSTEM directory and, for Multiple-tier
for UNIX and Windows NT Server, it is found in the bin directory below the U/SQL
Server software installation base directory.

Error Reporting Format

Error message text can be in one of two formats. For errors that do not occur in a
data source:

[vendor_identifier][ODBC_component_identifier](log: log_number)
component_supplied_text

For errors that occur in a data source:

[vendor_identifier][ODBC_component_identifier][data_source_identifier] (log:
log_number) data_source_supplied_text

where (log_number) is of the form - (pid-hhmmss)

where:

pid Process-id.

hhmmss Time in 24-hour format.

Example error messages are:

Configure and Use

165

�� Multiple-tier. For example:

[Transoft][TSODBC][usqlsd][C-ISAM](log: 14453-162956) 100:
Duplicate key condition encountered.

�� Single-tier. For example:

[Transoft][TSENG32][C-ISAM](log: 14453-162956) 100: Duplicate
key condition encountered.

�� In the UNIX based Interactive U/SQL utility, usqli. For example:

*** Error: (log: 14453-162956) 100: Duplicate key condition
encountered.

�� In the U/SQL Client based Interactive U/SQL utility, Win U/SQLi. For
example:

*** Error: (log: 14453-162956) 100: Duplicate key condition
encountered.

�� Note that the file-handler name and error code only appear as a result of a
failure within the file-handler. Examples from other file-handlers are:

[Transoft][TSODBC][usqlsd][MF](log: 14453-162956) 2/2: Duplicate
key condition encountered.

[Transoft][TSODBC][usqlsd][PRO-ISAM](log: 14453-162956) 108:
Duplicate key condition encountered.

�� Non file-handler specific errors appear without the file-handler name; for
example:

[Transoft][TSODBC][usqlsd](log: 14453-162956) Invalid record
expression in table CUSTOMER.

�� The following is an example of an error message displayed by Microsoft
Access using Multiple-tier U/SQL C-ISAM:

SQL Error Messages

U/SQL outputs ODBC SQLError that returns SQLSTATE values.

The character string value returned for an SQLSTATE consists of a two-character
class value followed by a three-character subclass value. A class value of ‘01’
indicates a warning and is accompanied by a return code of
SQL_SUCCESS_WITH_INFO. Class values other than ‘01’, except for the class
‘IM’, indicate an error and are accompanied by a return code of SQL_ERROR. The
class ‘IM’ is specific to warnings and errors that derive from the implementation
of ODBC itself. The subclass value ‘000’ in any class is for implementation defined
conditions within the given class. The assignment of class and subclass values is
defined by ANSI SQL-92.

Where appropriate the SQLSTATE values will be return in error messages from
the U/SQL Engine with the LogLevel of 0, the default.

Example SQLSTATE values, error messages and the ODBC function calls that may
have returned them are shown below:

Transoft U/SQL User Guide

166

SQLSTATE Error message Can be returned from

01000 General warning All ODBC functions except: SQLAllocEnv,
SQLError

01002 Disconnect error SQLDisconnect

01S00 Invalid connection
string attribute

SQLBrowseConnect
SQLDriverConnect

01S01 Error in row SQLExtendedFetch
SQLSetPos

Configure and Use

167

SQL Support

SQL Syntax Supported

U/SQL Revision 3.00 conforms to an ODBC Version 2 driver and works with the
ODBC Driver Manager Version 3. It supports ANSI '89 and ANSI '92 Compliant
SQL syntax with the ODBC shorthand SQL syntax for scalar functions, dates,
outer-joins and so on, which use the '{' (brace) syntax.

Although it is not possible to extend the underlying legacy data by making use of
the CREATE TABLE syntax, it is possible to use this syntax to create tables and
indexes in the UDD itself to hold temporary or other information. Refer to the
Hints and Tips section.

U/SQL supports, for example:

�� SELECT... WHERE... statements with AND, OR =, !=, >, <, >=, <=,
BETWEEN, NOT, LIKE

�� Joining tables with SELECT (including Cartesian product)

�� Arithmetic functions in SELECT statements (for example, SELECT
(column_name + 1) * 2, and so on)

�� String functions in SELECT statements

�� GROUP BY... HAVING... clauses in SELECT statements

�� Set functions (AVG, SUM, MAX, MIN, COUNT)

�� ORDER BY clauses

�� SELECT DISTINCT

�� Nested queries (SELECT within SELECT)

�� Date arithmetic.

U/SQL also supports a wide means of manipulating data. But you must not have
Read-Only set, either via your license or via the ReadOnly directive. Key data
manipulation statements are:

�� INSERT statements

�� UPDATE statements

�� DELETE statements.

For further information on SQL syntax and facilities supported by a Version 2
ODBC driver, refer to the Microsoft ODBC 2.0 Programmer's Reference and SDK
Guide for details.

General

�� The syntax:

"select top <n> ...<query> "

is supported, so

"select top 3 * from customer"

will only return the first three rows of the customer file. This can useful
when developing queries. This functionality is also supported as a directive
MaxRows=n, where n is the number of rows to be returned (at most).

Transoft U/SQL User Guide

168

Sample Queries

Sample SQL Syntax for Querying and Manipulating Data

The following sections show examples of SQL syntax for querying and
manipulating data for ODBC 2 compliance.

The examples shown make use of the Books Demonstration data provided with
your data source. In general, you will be able to reproduce these examples
yourself.

SELECT

Example SQL Statement(s) Description

89SEL090 select custcode as Code,
cust_name as Name,
cust_region as Region from
customer;

Correlated column names.

JOINS

Example SQL Statement(s) Description

89JOI100 select cust_name, odate,
stknum from customer,
orders, oline where
custcode = custcode and
orders.ordno = oline.ordno
order by cust_name, odate,
stknum;

3-way natural join (ordered on
all fields)

PREDICATES

Example SQL Statement(s) Description

89PRE034 select name from customer
where name between "A" and
"N" and code between
"C001" and "C005";

BETWEEN with AND on two
different fields

89PRE040 select * from customer
where cust_region in
('EAST');

Simple IN (single value)

89PRE057 select * from customer
where not (cust_name like
'The %');

NOT (LIKE %)

89PRE073 select * from customer
where NOT (cust_region is

NOT (IS NOT NULL)

Configure and Use

169

NOT NULL);

89CND040 select * from stock where not (price <
20.45 or price > 30);

NOT (< or >)

(inclusive between)

FUNCTIONS

Example SQL Statement(s) Description

89FUN010 select count (distinct
cust_region) from
customer;

COUNT(DISTINCT)

89FUN020 select avg(target) from
budget;

AVG

89FUN040 select max(target) from
budget;

MAX

89FUN060 select min(target) from
budget;

MIN

89FUN080 select sum(price),
sum(qty) from stock;

SUM

Rounding

Example SQL Statement(s) Description

89RND010 create table fred (code
numeric (9,4)); insert
into fred values (3);

select sum(-code) from
fred;

Sum rounding of single value

89RND020 select 5000.04 + 5001.04 +
5000.04 +

-15000.12 from customer;

Multiple value addition

ORDER BY

Example SQL Statement(s) Description

89ORD020 select a.cust_region,
a.cust_name, b.custcode,
b.odate from customer a,
orders b where
b.custcode=a.custcode
order by a.cust_region,
a.cust_name, b.custcode,
b.odate desc;

Order on columns produced by
a join of two tables, with one of
the ordered columns being
specified as descending.

Transoft U/SQL User Guide

170

89ORD053 select distinct custcode
from salehist order by
custcode desc;

select distinct instances of 2nd
alternate key and reverse order

GROUP BY... HAVING...

Example SQL Statement(s) Description

89GRP071 select cust_name,
cust_region, category from
customer, budget where
region = cust_region group
by cust_name, cust_region,
category having
sum(target) > 8000 and
sum(traget) < 12000;

GROUP BY... HAVING... with
AND predicates (across two
tables).

ERROR MESSAGES

These are a few sample error messages:

Example SQL Statement(s) Description

89ERR000 select * from no_table; ERROR : Table does not exist

89ERR010 select svalue, year,
no_column from salehist;

ERROR : Column does not exist
in table

89ERR020 Select target, category,
region;

ERROR : No from clause

89ERR030 select from customer; ERROR : No fields in select

89ERR040 select category, avg(target)
from budget;

ERROR : Column not grouped

89ERR050 select sum(category) from
budget;

ERROR : Invalid column spec.

SUB-QUERIES

Example SQL Statement(s) Description

89GRP071 select a.stknum,
a.stock_title, a.qty from
stock a where a.stknum not
in (select b.stknum from
oline b where b.qty > 1);

WHERENOT IN.

INSERTS

Example SQL Statement(s) Description

Configure and Use

171

89INS013 insert into oline (ordno,
lineno, stknum, qty)
select ordno, lineno+1,
stknum, qty from oline
where ordno=123001 and
lineno=3;

INSERT..SELECT FROM WHERE.
Insert one row based upon the
values returned by the subquery

UPDATES

Statements in italics are select statements for viewing 'before' and 'after' the
update to see if it has worked correctly.

Example SQL Statement(s) Description

89UPD014 select stock.stknum, stock.price
from stock, salehist, customer
where cust_region="SOUTH" and
salehist.custcode=customer.custcode
and stock.stknum=salehist.stknum;

update stock A set A.price = 700
where A.stknum in (select distinct
B.stknum from salehist B, customer
C where C.cust_region="SOUTH" and
B.custcode=C.custcode);

(Same post-select as pre-select)

UPDATE WHERE IN.
Update column to
fixed value contained
in update statement,
where the column
matches the sub-
query specification.

'Pre-Select' & 'Post-
Select' return the
values that would be
found by the sub-
query, which should
all show the same
value after the
update.

DELETES

Statements in italics are select statements for viewing 'before' and 'after' the
update to see if it has worked correctly.

Example SQL Statement(s) Description

89DEL021 select distinct customer.custcode,
customer.cust_name from customer,
orders where customer.custcode not
in(select customer.custcode from
customer, orders where
customer.custcode=orders.custcode);

delete from customer where
customer.custcode not in(select
customer.custcode from customer,
orders where
customer.custcode=orders.custcode);

(Same post-select as pre-select)

DELETE WHERE NOT
IN. Delete all rows
NOT matched in sub-
query.

UNIONS

Transoft U/SQL User Guide

172

Example SQL Statement(s) Description

89UNI020 select * from customer
where cust_region = 'EAST'
UNION ALL select * from
customer where cust_name
>'B';

UNION ALL test. Returns all
rows in customer table, with
duplicates.

OUTER JOINS

To obtain the full range of support for Outer Joins, please refer to the Release
Notice, supplied with the U/SQL Client software.

Example SQL Statement(s) Description

92JOI000 select cust_name,
customer.cust_region,
orders.odate from customer left
outer join orders on
customer.custcode =
orders.custcode;

Full ANSI'89 syntax

92JOI001 select cust_name,
customer.cust_region,
orders.odate from customer left
join orders on customer.custcode
= orders.custcode;

Short ANSI'89 syntax

92JOI002 select cust_name,
customer.cust_region,
orders.odate from --
(*vendor(microsoft),product(odbc)
oj customer left outer join
orders on customer.custcode =
orders.custcode*);

Full ODBC syntax

92JOI003 select cust_name,
customer.cust_region,
orders.odate from {oj customer
left outer join orders on
customer.custcode =
orders.custcode};

Short ODBC syntax

92JOI010 insert into orders values
(123029,"C007","1992-12-11") ;

insert into orders values
(123030,"C015","1992-12-11");

select * from orders left outer
join oline on orders.ordno =
oline.ordno;

SELECT * with numeric
outer join

92JOI011 insert into orders values
(123029,"C007","1992-12-11");

insert into orders values

outer join functions

Configure and Use

173

(123030,"C015","1992-12-11");

select count(*), min(qty),
max(qty), avg(lineno), sum(qty)
from orders left outer join oline
on orders.ordno = oline.ordno;

92JOI020 insert into orders values
(123029,"C007","1992-12-11");

insert into orders values
(123030,"C015","1992-12-11");

select * from orders left outer
join oline using ordno;

USING syntax

92JOI030 select cust_name,
customer.cust_region,
orders.odate from customer left
outer join orders on
customer.custcode =
orders.custcode where cust_name >
"n";

Simple predicate in outer
join

92JOI040 create table sales_table
(salecode char(4), goods char(4),
value integer);

create unique index SALECODEK0 on
sales_table(salecode);

insert into sales_table values (
'C002', 'G001', 123);

insert into sales_table values (
'C002', 'G002', null);

insert into sales_table values (
'C002', 'G003', 345);

select cust_name, custcode,
salecode, goods, value from {oj
customer left outer join
sales_table on custcode =
salecode };

drop table sales_table;

Scalar String Functions

Scalar functions allow scaling conversion to be carried out on data being
returned.

The scalar functions are specified in the Microsoft ODBC Programmer's Reference
and SDK Guide to which reference should be made as there are too many to list
in a document such as this. However, some examples are:

Example SQL Statement(s) Description

92STR000 select cust_name, {fn ascii("A")},

{fn ASCII(CUST_NAME)}, {fn

ODBC ASCII and
CHAR scalar

Transoft U/SQL User Guide

174

CHAR(65)},

{fn char({fn ascii(cust_name)})}
from customer;

functions.

92STR010 select cust_name, {fn
lcase("ABCdEF")}, {fn
ucase("abcDef")}, {fn
lcase(cust_name)}, {fn
ucase(cust_name)} from customer;

ODBC LCASE and
UCASE scalar
functions.

92STR020 select cust_name, custcode, {fn
left(cust_name,10)}, {fn
eft("ABCDEFGHI",5)}, {fn
right(custcode,3)}, {fn
right("ABCDEFGHI",5)}, {{fn right(
{fn left(cust_name,13)}, 5)} from
customer;

ODBC LEFT and
RIGHT scalar
functions

92STR030 select cust_name, {fn
length("ABcdEF h")}, {fn
length(cust_name)}, {fn
rtrim(cust_name)}, {fn length({fn
rtrim(cust_name)})} from customer;

ODBC LENGTH and
RTRIM scalar
functions

92STR040 select cust_name, {fn
soundex(cust_name)} from customer;

SOUNDEX function

92STR041 select {fn soundex("Smith")}, {fn
soundex("Smyth")}, {fn
SOUNDEX("Smiff")} from customer
where custcode="C001";

SOUNDEX function

92STR050 select cust_name, {fn
replace(cust_name,"Book",'Celery')}

REPLACE function

92STR060 select cust_name, {fn
locate('Book',cust_name)} from
customer;

LOCATE function

92STR070 select {fn concat(category,
region)} from orders;

CONCAT function

92STR080 select cust_name, {fn
substring("ABCdEFghiJKLMN", 4, 5)},

{fn substring(cust_name, 10, 6)}
from customer;

SUBSTRING function

92NUM010 select svalue, {fn pi()}, {fn
radians(svalue)}, svalue * {fn
pi()} / 180 from salehist where
svalue<=180;

PI and RADIANS
function

NB. x*Pi/180 converts
degrees to radians

92NUM020 select svalue, {fn sin({fn
radians(svalue)})}, {fn cos(
svalue * {fn pi()} / 180)}, {fn
tan({fn radians(svalue)})} from

SIN, COS, and TAN
functions (with
RADIANS function)

Configure and Use

175

salehist where svalue<=180;

92DAT010 select {fn curdate()} from customer
where custcode="C002";

CURDATE function.

NB. Test uses UNIX
'date' function to
check result

92DAT020 select odate, {fn dayname(odate)},
{fn dayofmonth(odate)}, {fn
dayofweek(odate)}, {fn
dayofyear(odate)} from orders;

DAYNAME,
DAYOFMONTH,
DAYOFMONTH, and
DAYOFYEAR functions

92SYS010 select {fn database()} from
customer;

DATABASE function

92SYS020 select {fn ifnull(region,"None")}
from customer;

IFNULL function

92CNV010 select {fn
convert(odate,SQL_TIMESTAMP)} from
orders;

CONVERT from
SQL_DATE to
SQL_TIMESTAMP

92CNV020 select (fn convert({fn now()} ,
SQL_DATE)} from customer where
custcode="C002";

NOW() function and
CONVERT to
SQL_DATE from
SQL_TIMESTAMP

Transoft U/SQL User Guide

176

READ_ONLY Views

The following syntax is now supported:

create view <viewname> [(columns-list...)] as <select statement>

and

drop view <viewname>

The create view statement generates a read-only view which may be used as a
table in its own right. For example:

create view eastcustomers as select * from customer where
cust_region="EAST";

select * from eastcustomers;

returns:

CUSTCODE

CUST_NAME

CUST_REGION

C001 Alden & Blackwell EAST

C005 Dillons the
Bookstore

EAST

C014 Volume 1 bookshops EAST

3 records retrieved

Alternatively:

create view eastcustomer2 (code, name) as select custcode,
cust_name from customer where cust_region="EAST";

select * from eastcustomer2;

returns:

code

name

C001 Alden & Blackwell

C005 Dillons the Bookstore

C014 Volume 1 Bookshops

3 records retrieved

It is also possible to use the info command in usqli to examine view definitions:

info eastcustomers

returns:

U/SQL> info eastcustomers

create view EASTCUSTOMERS (CUSTCODE, CUST_NAME, CUST_REGION) as
select * from customer where cust_region="EAST";

Configure and Use

177

/* Unique row identifier: CUSTCODE */

Note: The "Unique row identifier" line is used as the primary key if the view is
examined via a third-party product such as Microsoft Access.

Transoft U/SQL User Guide

178

Limitations

�� Locking with SELECT FOR UPDATE statement

U/SQL provides explicit locking at the record level immediately prior to a
record being updated or deleted via UPDATE and DELETE statements.
However, the SELECT FOR UPDATE statement only locks the current
record and not the cursor of records being updated. In order to ensure that
all records are locked until the transaction is complete, your own application
must make use of a Named Cursor.

For Multiple-tier U/SQL, set the server LockTimeout= directive to -1 (the
default) to ensure that your application waits indefinitely on any lock set by
any other process or ODBC application. See the Locking section for more
information.

�� U/SQL does not allow an aggregate function within another
function

The aggregate function must be the outer-level function. For example, the
following is not supported:

select {fn ifnull(sum(qty),0)} from oline where lineno=0;

This is because the ifnull() function is outside the sum() function, which

is an aggregate function. An aggregate function is any of: min(), max(),
sum(), avg(), count().

It is permissible to have a function within the aggregate, for example:

select sum({fn ifnull(qty,0)}) from oline where lineno=0;

Within GROUP BY expressions, U/SQL does allow an expression to be
grouped, but it must be the exact expression used in the SELECT clause.
The following is not permitted:

select a,b,a*b,sum(c) from myfile group by a,b

This is because the expression "a*b" is not grouped, so causes an error to

be reported when the query is prepared. It would be necessary to change
this to be:

select a,b,a*b,sum(c) from myfile group by a,b,a*b

Configure and Use

179

Transaction Processing

The ability to perform transaction processing has been implemented in the U/SQL
C-ISAM, ACUCOBOL and Micro Focus COBOL data source drivers (DSDs) on UNIX
platforms. Informix, the authors of C-ISAM, documents two forms of transaction
processing:

�� Non-ANSI

Transactions are initiated with a begin statement, and terminated by either
a commit statement or a rollback statement. Informix C-ISAM conforms to
this method of transaction processing.

�� ANSI

Transactions are implicit. Transactions are explicitly terminated by either a
commit statement or a rollback statement. Normally, the first update of
data initiates a transaction. Micro Focus COBOL and Microsoft ODBC
conform to this method of transaction processing.

The ANSI method of transaction processing has been implemented in U/SQL
Adapters.

Activate Transaction Processing

To activate transaction processing, there are additional directives to be placed in
UNIX usqlsd.ini configuration file.

�� AutoTransProc={Y|N}

Automatic Transaction Processing. This is set to either Y or N, and it may
be specified within either an individual [<data source section>] section
or the [Data Source Defaults] section of usqlsd.ini. The default is N.

AutoTransProc must be set to Y for transaction processing to become
activated. If it is set to N transactions may never be initiated. Once set to Y
transactions become possible, although it is still necessary either to use
"TRANSACTION MODE ON" or the ODBC call
SQLSetStmtOption(...,SQL_AUTOCOMMIT,SQL_AUTOCOMMIT_OFF) to
initiate transactions.

�� TransLogDir=/usr/usqls/bin

Transaction Log file Directory. This need only be specified for the C-ISAM
data source which requires the name of a log file in order to carry out
transaction processing. The log filename is csm_trans.log, and it is
located in the directory identified by this entry within the [Configuration
Settings] section of usqlsd.ini. csm_trans.log is automatically created if
it does not exist; otherwise, it is appended to.

�� FileShare={Y|N}

For Micro Focus COBOL, transaction processing is only possible if Micro
Focus Fileshare is operating. Set the FileShare directive to Y within either
an individual [<data source section>] section or the [Data Source
Defaults] section of usqlsd.ini. The default is N.

Note: U/SQL for ACU COBOL supports transaction processing. To enable this you
must set the AutoTransProc directive.

Transoft U/SQL User Guide

180

Transaction Processing Syntax

The transaction processing syntax is as follows:

TRANSACTION [MODE]
{ON|OFF}

Commence/Terminate transaction processing.

COMMIT [WORK] Commit a transaction.

ROLLBACK [WORK] Rollback a transaction.

Both the Interactive U/SQL utilities, the client-based Win U/SQLi and the UNIX-
based usqli, support the transaction processing syntax.

Micro Focus COBOL Data Source Driver

Transaction processing is only possible if Micro Focus Fileshare is operating which
is achieved as follows:

1. Log in as root user, and start the process registration daemon:

cd /usr/lib/cobol

./ccitcp2 -d

2. Log in as a non-root user, and start the Fileshare server in the directory
containing the data files:

fs -s hostname

3. Add the following usqlsd.ini configuration file entry to either an individual
[<data source section>] section or the [Data Source Defaults]
section:

FileShare=Y

4. Start the U/SQL Server:

./start_serv.sh

or:

./usqlsd port=port_number

The SQL Engine instructs the Micro Focus Data Source Driver (DSD) to open and
close relevant data files before and after each SQL query respectively. A
transaction, in Micro Focus COBOL, commences with the first update of data, and
terminates when the file handler is called with an operation code of either commit
or rollback. During that time the relevant data files must remain open. The DSD
has been modified so that data files remain open during a transaction. However,
if a large number of queries are issued involving a large number of data files
within any one transaction, it is possible that the maximum number of file
descriptors available to any one process may be exceeded.

Rollforward Recovery

It will be necessary to ensure that a C-ISAM transaction log file is backed up as
part of any regular data backup procedures. Once this is done, a potentially large
log file may be purged. In addition to its use in transaction processing, a log file
is used to facilitate a rollforward recovery after a system failure.

Micro Focus Fileshare provides its own form of transaction logging and rollforward
recovery. This may be activated at the time Fileshare is started up.

Configure and Use

181

Transoft U/SQL User Guide

182

Locking

If the directive TrueSFU=Y is set, multiple records may be locked at once in any
of C-ISAM, Micro Focus COBOL and ACUCOBOL.

To lock records, a "SELECT FOR UPDATE" statement is executed. The behaviour
is described below:

�� Without TrueSFU set (the default): As each row is fetched, it is locked.
When the next row is fetched, the first is unlocked and the new one
locked. Thus only 1 row can be locked at any one time, and once the
query is completed no rows are locked.

�� With TrueSFU set: As each row is fetched, it is locked as before.
However, when the next row is fetched, the first row remains locked. They
all remain locked until a ROLLBACK or COMMIT statement is executed,
or (through ODBC) SQLTransact is called.

If transaction processing is not in use but TrueSFU is set to Y, it is then
permissible to use COMMIT, ROLLBACK or SQLTransact to perform a ‘dummy
transaction end’ which unlocks all files associated with the current connection.

The LockTimeout INI directive controls how lock U/SQL will wait to acquire a
lock before reporting an error. If set to -1 (the default), U/SQL will wait
indefinitely. If set to 0, U/SQL will report an error immediately on failing to obtain
a lock. If set to any other positive integer, U/SQL will wait for that number of
seconds, retrying once per second, until either the time expires and an error is
reported or the lock is obtained successfully.

Configure and Use

183

Security

Security

Security is a major issue particularly in the access of multi-user applications. With
a variety of ODBC-enabled query tools, using U/SQL, it is important to ensure
that only approved users are able to query and modify your application's data.

This section describes:

�� Multiple-tier user connection security.

�� Grant and Revoke security. The granting and revoking of table and column
privileges to users, once they are allowed to connect.

�� The role of the Database Administrator (dba).

Transoft U/SQL User Guide

184

Multiple-tier Security - User Connection

Multiple-tier Security enforces operating system user connection security. The
security features are comprehensive and flexible and cover virtually all user
requirements for connection level security.

UNIX and Windows NT Server

Security is controlled at the U/SQL Server through server directive settings either
from the usqlsd.ini configuration file on UNIX or from the U/SQL Service
Manager on Windows. The U/SQL Client automatically detects a secure U/SQL
Server and prompts for the user's operating system username and password.

By default, security is off.

Note: The directive names given below appear in the usqlsd.ini file on UNIX, but
are set from the Security tab of the U/SQL Service Manager on Windows Multi-
Tier systems. See the U/SQL Service Manager to set Windows Security Directives
section below.

UNIX

When requiring security on UNIX platforms, it is mandatory to start the usqlsd
U/SQL Server process as root.

Multiple-tier security configuration directives

There are four configuration directives related to Multiple-tier Security, which are
set either in the UNIX usqlsd.ini configuration file (for further information, refer
to the Configuring Multiple-tier U/SQL section), or using the U/SQL Service
Manager on Windows (see the U/SQL Service Manager to set Windows Security
Directives section below).

Security={None|Host} None: Security is not used for this data source.
All further security options are ignored.

Host: Operating system level security is used.
The username and password are validated on the
host system.

The default setting is Security=None.

BecomeUser={Y|N} If set to Y, the U/SQL Server changes its user-ID
and group-ID to that of the user. This ensures
that operating system file permissions take
effect. If set to N, the username and password
are still validated, but the U/SQL Server does not
change user.

Note: To use this option, the U/SQL Server must
be started, for UNIX, as root and, for Windows
NT Server or Windows 2000, by a user with
Administrator privileges.

UnauthorizedAccess={N|Y} If set to Y, unauthorized connections are allowed,
but only have read access. That is any

Configure and Use

185

connection that would otherwise fail due to an
invalid username or password, will successfully
connect but will have Read Only access. If set to
N only validated users have access as normal.

This option may be useful for installations where:

A. A client-based program has been
developed that requires full update
access.

B. There are some "power" users that can be
trusted to do updates and where all other
users running generic reporting
application should only have read access.

If used, this option must be used with
SecurityFile= option, see below, to specify the
user account(s) that have full access. Otherwise,
any user knowing a login could get full access.

The default setting is UnauthorizedAccess=N.

SecurityFile=<path_name> This option is used to limit access to a data
source to a specified list of users. You specify a
security file, with its path, which contains for
each data source a user access section with its
list of valid users, see the section Security File
Contents below.

An example security file entry in the UNIX
usqlsd.ini configuration file might be:

SecurityFile=/usr/usqls/security.txt

An example security file entry in the Windows NT
Server or Windows 2000 Registry file might be
(note, the '.SEC' extension):

C:\USQLCS\SECURITY.SEC

Security file contents

There can be any number of data sources' user access defined in one security file.
Each is defined as the Data Source Name (DSN), for example, books.udd, with
"_Access" appended, in this case [books.udd_Access]. Remember the DSN
does not have to have a '.udd' extension.

The user access section contains a list of users specifying the access they are
permitted in the form:

<username>={none|readonly|full}

none The user has no access.

readonly The user can only read from the data files.

full The user can read from and write to the data files.

Note: none, readonly and full must be lowercase.

The security file must be owned under UNIX by root and under Windows NT
Server or Windows 2000 as Administrator and be read only.

Transoft U/SQL User Guide

186

UNIX

The UNIX usqlsd.ini configuration file can also be used as the security file and
setting SecurityFile=* defines this. Hence you can specify your security
requirements in the one usqlsd.ini file or in a separate file, whichever is more
convenient.

For example, if the Data Source Name is books.udd, the user access section in
the security file might appear as follows:

[books.udd_Access]

root=full

eric=readonly

burt=none

If a user does NOT have an entry in the access section or if access is set to none,
the user CANNOT connect to the data source. Otherwise the username and
password will be validated as usual.

See the UnauthorizedAccess= option for an exception to this.

U/SQL Service Manager to set Windows security directives

The above shows example Security settings made via the Windows NT Server
U/SQL Service Manager.

Optional lockdown security

Tighter 'lockdown' security is available under both UNIX and Windows NT Server
platforms, as follows:

UNIX

Configure and Use

187

You are able to provide tighter security by ensuring only one UNIX usqlsd.ini
configuration file is used and not other 'local versions'. If the U/SQL Server finds
an usqlsd.ini file in the precise directory structure /usr/usqlcs, then it will look
for no other and the following can be implemented to provide this extra level of
security:

�� A new section [Data Sources] must be added, to the usqlsd.ini
configuration file, which lists the valid data sources. ONLY these can be
connected to. For example:

[Data Sources]

books=Books demo

[books]

Directory=/usr/usqlcs/example

Dictionary=books.udd

�� Each data source must specify a Directory= option.

�� Security is ON for all data sources.

To ensure the tightest security, the following is recommended:

1. Create the /usr/usqlcs directory and set up in it the usqlsd.ini
configuration file as specified above.

2. Start the U/SQL Server as root or an administrative account that has
access to the database files.

3. Set file access permissions so that general users have NO access to the
following:

�� The /usr/usqlcs directory

�� The /usr/usqlcs/usqlsd.ini configuration file

�� usqli and usqlsd programs

�� The data dictionary '.udd'

4. Set the security configuration parameters as follows:

Security=Host

BecomeUser=N

UnauthorizedAccess=N

SecurityFile=* : or a file name

Add the list of users to the access section of the security file as specified above.

Windows NT Server and Windows 2000

For Windows NT Server and Windows 2000, lockdown security is implemented by
setting the directive LockdownFile=<filename> in the [Configuration Settings]
section using the U/SQL Service Manager. Refer to the U/SQL Service Manager
section.

The lockdown <filename> is a text file that must contain the section heading
[Data Sources] followed by a list of valid data source names beneath it. This
format is the same as for the [Data Sources] section in the usqlsd.ini
configuration file on UNIX.

Transoft U/SQL User Guide

188

GRANT and REVOKE Security

User authorization is required, in general, to prevent some users from accessing:

�� Certain tables

�� Certain columns

�� Via SELECT, INSERT, UPDATE or DELETE SQL verbs

In U/SQL revisions 3.00 and above, statements have been provided to support
the setting up of users and the granting and revoking of privileges. These
statements are entered only via the Interactive U/SQL utilities, Win U/SQLi or
usqli, and are:

�� USER

�� GRANT

�� REVOKE

GRANT and REVOKE security is only invoked when the first USER is defined, who
must be the dba (Database Administrator), that is when the following statement
is entered via the Win U/SQLi or usqli utilities:

USER dba password

Note: Ensure you do not lose the dba password as it is not accessable.

Once the dba user has been created, only he/she can add other users and their
passwords. A user once created can change only his/her password (but at any
time).

Once User Authorization has been activated, all users will have to enter their
UserName and Password when logging on.

Note: If you are also using Multiple-tier user connection security, then it is
advisable to use the same IDs for GRANT and REVOKE user authorization to
prevent the need to log in twice.

The other statements, using the GRANT and REVOKE keywords, are used to
define the access privileges. After the dba has set up the UserNames and
Passwords, all users have full access rights to all tables. The dba then restricts
particular users from certain tables and columns.

This section covers the following topics:

�� User Administration

�� GRANT and REVOKE Syntax

�� Batch Entry

�� Connecting to a Data Source

�� GRANT and REVOKE Security Issues

�� GRANT and REVOKE Error Messages.

User Administration

User IDs and passwords are maintained by using the following two commands:

USER dba password

USER username {password | REMOVE}

Configure and Use

189

where password is case-sensitive. These commands can be used via the UNIX
and Windows Interactive U/SQL Utilities, usqli and Win U/SQLi respectively.

username and password can be a maximum of 20 characters each.

dba is the username for the Database Administrator, and must be in lowercase.

GRANT and REVOKE security is activated for the first time within a data source by
issuing the first command above. For example:

USER dba dbapwd

The following takes place:

�� Internal UDD tables are created to store user IDs and permissions
granted.

�� The ownership of all tables is amended to be "dba".

�� The user "dba" is created.

Only user dba can modify or drop system tables and indices. Non-dba users will
be able to view these tables; with the exception of UDDUSER, which can only be
viewed by user dba.

Only user dba can create and remove users; for example:

USER ken kenpwd

USER ken REMOVE

User dba can also modify user passwords; although, a non-dba user can change
only his or her password. For example:

USER ken KENPWD

Note: All usernames however entered are converted to lowercase.

GRANT and REVOKE Syntax

The data dictionary system table UDDAUTH is maintained by the following
commands:

GRANT privilege ON [TABLE] table_name TO { username,...} | PUBLIC

REVOKE privilege ON [TABLE] table_name FROM { username,...} | PUBLIC

where privilege ::=

{ ALL [PRIVILEGES] [(column_name,...)] }

| { SELECT [(column_name,...)] }

| DELETE

| { INSERT [(column_name,...)] }

| { UPDATE [(column_name,...)] }

and where PUBLIC implies ALL users.

These commands can be used using the UNIX and Windows U/SQL Interactive
SQL Utilities, usqli and Win U/SQLi respectively.

For example:

�� revoke all on employee from public

Remove all access privileges on table employee from all users.

�� grant select on employee to jim, bill, ken

Transoft U/SQL User Guide

190

Grant SELECT access privileges on table employee to users jim, bill and
ken.

�� revoke all (salary) on employee from jim

Remove all access privileges on column salary within table employee from
user jim.

�� grant update (salary) on employee to bill

Grant UPDATE access privileges on column salary within table employee to
user bill.

Only dba may specify access privileges on that table.

Table and column access privileges for a user are established in the following
increasing order of priority:

Highest: An entry for this user for this column within this table

Entry for this column for PUBLIC

Entry for this user for this table

Lowest: Entry for this table for PUBLIC

If no Grant/Revoke command has been applied to this table or column, then no
additional restrictions will be imposed by Grant/Revoke security.

Note: Setting a user to be Read Only via Host-Level security (LINK!) takes
precedence over Grant/Revoke security.

To ensure that data files are read efficiently, the user must have SELECT access
privileges on the columns that make up the primary key of the table being
viewed.

Even if not using a SELECT statement, it is necessary to have SELECT permission
on any tables/columns used in any WHERE clause.

Batch Entry

In practice and for convenience, all the users and their passwords, that is USER
statements, followed by the table and column privileges, that is GRANT and
REVOKE statements, are placed in a text file.

This text file must have a '.SQL' extension, for example, USERACC.SQL, and its
contents executed via the Interactive U/SQL, Win U/SQLi or usqli, utilities. For
example, after executing the UNIX server based usqli utility, enter the text file
name at the U/SQL> prompt:

U/SQL> USERACC

Note: The '.SQL' extension is not included.

Great care must exercised over the security of this file as it contains all the users'
passwords and privileges.

The same can be done through Win U/SQLi, loading and executing the SQL.
Ensure that there is a statement delimiter ';' between each GRANT and/or
REVOKE statement. Using a file to set up permissions is recommended so that
the permissions can easily be set up again in the case that a new UDD is created.

Configure and Use

191

Connecting to a Data Source

A data source is checked, at the time of connection, for the presence of GRANT
and REVOKE security.

Connecting to a data source, in which GRANT and REVOKE security is active,
causes U/SQL Adapters to prompt the user for a username and password. The
user is offered a maximum of three attempts to supply a correct username and
password. The previous username, if available, is supplied as a default when
prompting for a username.

Connecting to a data source, in which Multiple-tier Security, see the section
Multiple-tier Security - User Connection, in addition to GRANT and REVOKE
security, is active, causes U/SQL to prompt the user for a host username and
password. This username and password combination, if correct, is automatically
passed through to the GRANT and REVOKE security level in order to check if an
equivalent entry is present within the list of defined users set up using the USER
command listed above. If not, the user is prompted for a username and password
in the same manner as described above.

Example Multiple-Tier Security login

Example GRANT and REVOKE Security login

GRANT and REVOKE (G&R) Security Issues

User Table 'Views'

When Grant/Revoke security is in effect, if a user has read-access to a subset of
the columns of a table, a SELECT * FROM <table> command will return all the
accessible columns. Any columns the user could not query explicitly will not
appear. That is, the “*” operator in a SELECT statement evaluates to “all
accessible columns” as opposed to “all columns”.

Read Only

Transoft U/SQL User Guide

192

When a read-only data source is enforced, either by the directive ReadOnly=Yes
or the Multiple-tier user security access <user_name>=readonly, read-only G&R
is activated.

The G&R specific commands, USER, GRANT and REVOKE are disabled, but should
they be used then the following message is displayed:

Cannot modify GRANT and REVOKE security within a read-only
data source.

Passwords

User passwords, held in the UDDUSER table in the UDD, are never displayed. For
example, using the UNIX Interactive U/SQL utility, usqli:

U/SQL> select * from udduser;

USER PASSWORD

---- --------

dba *

fred *

Using U/SQL Manager

Once G&R security has been enabled, only the Database Administrator, that is the
user dba, can update table(s) using the U/SQL Manager, for COBOL data sources.

SQLDriverConnect()

If you are creating applications that require G&R usernames and passwords to be
processed, then this can be achieved by the ODBC function
SQLDriverConnect(), which has been extended in U/SQL to include:

GR_UID=gr_uid;GR_PWD=gr_pwd;

where:

gr_uid G&R security username

gr_pwd G&R security password

An incorrect username or password results in an ODBC error code 28000 (Invalid
authorization specification) and an error message text of:

GRANT and REVOKE Security

The function SQLDriverConnect() also supports as standard the Multiple-tier
user connection username and password security. An incorrect username or
password also results in an ODBC error code 28000 and the error message text
for an unsuccessful attempt of this security is:

Multiple-Tier Security

For details on the SQLDriverConnect() function refer to the Microsoft ODBC 2.0
Programmer's Reference and SDK Guide.

Export or Import

The following applies to the Export and Import facilities:

�� An attempt by a non-dba user to export or import any table results in the
following being displayed in the UNIX Interactive U/SQL utility, usqli:

Configure and Use

193

*** Error: User must be Database Administrator.

and the following error dialog is displayed in client based Interactive U/SQL
utility, Win U/SQLi:

�� While the list of users and permissions is contained within the tables
UDDUSER and UDDAUTH respectively, it is not recommended to import or
export these tables directly. Rather, it is recommended that a script be
maintained containing the list of commands used to generate all the G&R
permissions and for this to be used again in the event of a UDD having to
be recreated.

If export or import is required, then note that only the dba may do this,
G&R security must have been activated prior to import (by the command
“USER dba <password>”) and all user passwords must be set up separately
as the import will not preserve the original passwords.

GRANT and REVOKE Error Messages

The following are error messages associated with GRANT and REVOKE security:

�� GRANT and REVOKE security access denied for user "username"

�� GRANT and REVOKE security not active

�� User is neither the table owner nor the Database Administrator

�� User must be Database Administrator

�� Other than Database Administrator, user can only alter their own
password

�� Attempt to remove non-existent user "username" from table UDDUSER

�� Maximum user name length of 20 exceeded

�� Maximum password length of 20 exceeded

�� Table table_name does not exist

�� Column column_name does not exist

�� Privilege* access denied on table: table_name

�� Privilege access denied on column: column_name

�� Privilege access denied on index: index_name.

Transoft U/SQL User Guide

194

Query Planning

Query Planner

The type of plans examined by the U/SQL Query Planner are referred to as
nested-loop plans. All possible nested-loop plans for the tables of the query are
examined and the cheapest to execute is chosen as the best plan. By cheapest
we mean the one that uses the least estimate of disk I/O activity.

For example, consider a query based upon three tables A, B and C. One of the
possible nested-loop plans could be represented as:

B

 A

 C

By this we mean that first table B is examined for all eligible rows, and for any
such row table A is then examined for all eligible rows and for each such row
table C is then examined for all eligible rows. At this stage for each eligible row of
C we will have eligible candidate rows from A and B that meet any join criteria
and hence a row of the result set of the query. Perhaps we can see why this is
called the nested-loop method.

For the three tables A, B and C there are 6 possible nested-loop plans to
consider:

A A B

 B C A

 C B C

B C C

 C A B

 A B A

In general for n tables there are n! (n factorial) possible nested-loop plans to
examine. n! can get very large as n increases, for example:

n n!

1 1

2 2

3 6

4 24

5 120

Configure and Use

195

6 720

7 5040

8 40320

Luckily most queries fall into the lower range of number of tables. Also there are
techniques which are used to limit examining lower branches of the possible set
of plans where it is obvious some previously examined plan is already cheaper
than the partially examined plan in hand (a so called branch-and-bound
algorithm).

The whole rational of examining the different plans is that some are cheaper to
execute than others and one will be the cheapest. For any one of the n! plans
over n tables we need to find the cheapest method of executing that particular
ordering of tables. Consider again the 3 table plan:

B

 A

 C

When costing this plan we start with table B. How should table B be accessed?
We are looking for a way that uses the least I/O and delivers the minimum
number of candidate rows. The Query Planner knows about the structure of B
(size and indices) and also about any part of the WHERE clause that effects table
B. In this case only parts of the WHERE clause that are independent of any other
tables can be considered because B has no superior tables in the plan.
Specifically this will be predicates that involve columns of B and literals or
parameter markers. For example:

SALARY > 20000 and AGE BETWEEN ? and ?

If there is no part of the WHERE clause that can be used at this point there is no
alternative but to access B sequentially and consider every row as a candidate
row. It may be that part of the WHERE clause can be applied to B to filter the
candidate rows but still a complete sequential scan of the table is required. This
will have the same I/O cost but will render less candidate rows that will drive the
remainder of the plan. Alternatively the applicable part of the WHERE clause may
reference columns of B that form a significant part of some index on B. This can
yield a much cheaper access method and also a dramatically reduced number of
candidate rows. In the extreme, if all columns of a unique index are specified as
equal to some value then the I/O cost is one index access and the number of
candidate rows is one (or zero). With this method of analysis we can arrive at a
decision on the cheapest way to access table B.

We can then move on to consider table A. Again we need to determine the part of
the WHERE clause that is applicable at this point. This will be parts that refer to
columns of table A OR columns of table B but NOT columns of table C. In general
this requirement is referred to as pruning the predicate tree. Having determined
the pruned WHERE clause that can be used we apply the same analysis as we
did in the table B case. Specifically we can consider predicates of the form:

A.col1 = B.col2

Once the cheapest method of accessing table A is determined this cost is
multiplied by the number of candidate rows for table B, as this access will have to
be repeated that number of times. Similarly the estimate of the number of rows
returned from A is multiplied to indicate how often table C will be accessed.

Transoft U/SQL User Guide

196

We then move on and examine how to access table C. This time any part of the
WHERE clause can be used in the analysis.

The general form of this method of analysis is used in the U/SQL Query Planner.
The end result is a plan which is defined in terms of:

�� An ordering of the tables in the query

�� For each table a method of access

For our example 3 table query this may be expressed as something like:

1. Table C using duplicate index 2

2. Table A sequentially with filter

3. Table B using unique index 0

This section discusses:

�� Viewing the Query Plan

�� Affecting the Query Planner.

Viewing the Query Plan

It is possible to view the query plan that the U/SQL Server engine evaluates
based on the given SQL statement and details of the tables and their indices etc.
The object of providing the query plan is to assist you evaluate whether you have
specified the optimal SQL statement. Sometimes it is better to re-arrange the
statement to make better use of available indices etc.

The query plan can be viewed via the Interactive U/SQL utilities, either the client-
based Win U/SQLi or the UNIX server-based usqli.

In Win U/SQLi, you are able to see the query plan in its own window by selecting
the Query Plan option from the Query menu.

In usqli, at the U/SQL> prompt, set showplan 1:

U/SQL> showplan 1

Refer to the usqli on UNIX Servers section.

Take, for example, the following SQL statement, querying the UDD's system
tables:

select uddtables.tabname, colname from uddtables, uddcolumns,
uddsources where source='BB' and uddtables.tabname =
uddsources.tabname and uddcolumns.tabid = uddtables.tabid;

Then the following query plan is produced:

(Query: 1) UDDCOLUMNS SEQUENTIAL

(Query: 1) UDDTABLES INDEXED

Index No. 0
Lower : Set UDDTABLES.TABID to UDDCOLUMNS.TABID
Upper : UDDCOLUMNS.TABID >= UDDTABLES.TABID
With Filter : UDDCOLUMNS.TABID = UDDTABLES.TABID

(Query: 1) UDDSOURCES INDEXED

Index No. 0
Lower : Set UDDSOURCES.TABNAME to UDDTABLES.TABNAME
Upper : UDDTABLES.TABNAME >= UDDSOURCES.TABNAME
With Filter : (UDDSOURCES.SOURCE = 'BB' and UDDTABLES.TABNAME =
UDDSOURCES.TABNAME)

Configure and Use

197

The above query plan shows the order in which the tables (defined in the order 0,
1 and 2) are processed:

�� UDDCOLUMNS SOURCES, table (1), is scanned sequentially because since
there is no way to use an index for all three tables, the query planner has
chosen to scan this table to get better index use on the other tables.

�� For each column within UDDCOLUMNS, the equivalent table entry in
UDDTABLES (table (0)) is determined using its unique key.

�� Finally, table (2), UDDSOURCES is queried to retrieve the table source
type, and this is checked against “BB”. If this check is successful the row
is a valid one.

Note: This query is not optimal in many cases, because (unknown to the query
planner) there are likely to be many more rows within UDDCOLUMNS than
UDDTABLES or UDDSOURCES. See the next section, Affecting the Query Planner,
to discover how the query planner’s knowledge of the tables can be improved.

Affecting the Query Planner

A simple way in which the performance of the Query planner can be enhanced,
involves how the files are accessed. Other methods are highlighted in the section
Tuning the Query Planner.

The way in which the files are accessed can dramatically affect the performance
of the query.

The Query Planner in the absence of any specific information assumes that each
application table consists of 1000 rows requiring 100 disk pages to be read. It is
possible to influence the Query Planner by updating any application table's details
in the UDDTABLES table with the number of rows (column nrows) it contains.

This does not need to be an exact value. The Query Planner looks at the relative
sizes between application tables in making its decisions. Sometimes two
application files are nearly the same size, but the Query Planner takes the 'wrong'
file as the driving file so you can 'force' the Query Planner to use the 'right' file by
changing the number of rows appropriately

Here is an example of influencing the query planner. Take the following query:

select customer.cust_name, orders.odate, orders.ordno, oline.lineno,
stock.stock_title, oline.qty
from none.customer customer, none.oline oline, none.orders orders,
none.stock stock
where orders.custcode = customer.custcode and oline.ordno =
orders.ordno and stock.stknum = oline.stknum;

The default plan is

(Query: 1) OLINE SEQUENTIAL

(Query: 1) ORDERS INDEXED
Index No. 0

Lower : Set ORDERS.ORDNO to OLINE.ORDNO
Upper : OLINE.ORDNO >= ORDERS.ORDNO
With Filter : OLINE.ORDNO = ORDERS.ORDNO

(Query: 1) CUSTOMER INDEXED
Index No. 0

Lower : Set CUSTOMER.CUSTCODE to ORDERS.CUSTCODE
Upper : ORDERS.CUSTCODE >= CUSTOMER.CUSTCODE
With Filter : ORDERS.CUSTCODE = CUSTOMER.CUSTCODE

Transoft U/SQL User Guide

198

(Query: 1) STOCK INDEXED
Index No. 0

Lower : Set STOCK.STKNUM to OLINE.STKNUM
Upper : STOCK.STKNUM <= OLINE.STKNUM
With Filter : STOCK.STKNUM = OLINE.STKNUM

As with the query listed in the previous section, this query plan assumes that the
files are all the same size, and as such is not optimal. The OLINE file is a detail
file to the ORDERS master file. It is almost always better to read the master file
in such circumstances first, and then read all detail records from that one.

The query planner initially assumes that all tables contain 1000 rows. This can be
amended by adjusting the nrows field within the UDDTABLES table:

update uddtables set nrows=1000000 where tabname=”OLINE”;

Now the query planner knows that the OLINE table is much larger (it now
contains a million rows), and the query plan would be amended as follows:

(Query: 1) ORDERS SEQUENTIAL

(Query: 1) CUSTOMER INDEXED
Index No. 0
Lower : Set CUSTOMER.CUSTCODE to ORDERS.CUSTCODE
Upper : ORDERS.CUSTCODE >= CUSTOMER.CUSTCODE
With Filter : ORDERS.CUSTCODE = CUSTOMER.CUSTCODE

(Query: 1) OLINE INDEXED
Index No. 0
Lower : Set OLINE.ORDNO to ORDERS.ORDNO
Upper : OLINE.ORDNO <= ORDERS.ORDNO
With Filter : OLINE.ORDNO = ORDERS.ORDNO

(Query: 1) STOCK INDEXED

Index No. 0
Lower : Set STOCK.STKNUM to OLINE.STKNUM
Upper : STOCK.STKNUM <= OLINE.STKNUM

With Filter : STOCK.STKNUM = OLINE.STKNUM

Note how the plan is now driven by ORDERS, rather than OLINE.

Configure and Use

199

Tuning the Query Planner

The following directives can be used to tune the performance of U/SQL:

Directive DSD support Description

ForceSimilarIndex

Example

C-ISAM

(If you plan to
use this with
other DSDs,
contact
Transoft
support.)

Setting ForceSimilarIndex to Y
allows you to force a change of index.

For example, the following condition
causes a change of index to be used
for the query plan:

If two tables exist in the query T1
and T2, where:

�� T2 is using an index

�� T1 is scanning sequentially

�� T2 is using a variable from T1
to read

�� the variable being used forms
part of an index in T1

In this example, the query planner
changes to read along the index in
T1. This is designed to speed up read
operations so that the rows for T2
are fed to it in approximately the
correct order.

The default for ForceSimilarIndex
is N.

SetInIndexUse

Example

All DSDs Setting SetInIndexUse to Y allows
you to optimize a "where <item> IN
(subquery)" clause for index use. This
allows jumps to avoid inefficiencies,
for example when a subquery returns
values near the first and last in the
values, and therefore scans in all
values between them.

The default for SetInIndexUse is N.

AlternativeIndex

Example

C-ISAM,
ACUCOBOL,
Micro Focus
DSDs.

Setting AlternativeIndex to Y
enables you to use overlapping
indexes.

For C-ISAM and COBOL, this is
performed at the update dictionary
stage, when a file UDDALTIND is
populated. (If UDDALTIND is not
present, you need to recreate the
dictionary to enable it). During an
update, all indices are examined to
see if there are overlapping fields

Transoft U/SQL User Guide

200

which could be used to map onto the
existing index.

When an index is split into sections
around the record, this option will not
pick them up as valid, because the
logic of reassembling the key field
would become too complex.

The default for AlternativeIndex is
N.

IndexStats

Example

All DSDs Setting IndexStats to Y allows the
use of UDDSTATS to determine the
choice of index. If UDDSTATS has
not been set up, this has no effect. If
UDDSTATS has been populated,
information there is used to
determine costing information for
each index and part thereof.

The default for IndexStats is N.

Distinct Jump

Example

All DSDs When you set DistinctJump to Y,
using a query such as select distinct
item from file, the engine can use the
index on a column (item in this case),
to jump past duplicate values.

This directive applies to all DSDs. The
default for DistinctJump is Y, that
is, it is switched on by default.

CacheTables All DSDs Setting CacheTables to Y enables
the query engine to remember the
UDD structure of the table between
statements. This can be useful if you
are likely to be performing many
small queries, on the same tables, on
the same connection. (When the
connection is broken, the table
structure is forgotten.)

This directive is only recommended in
cases such as inserting many rows
into one file where the same file is
being used for each, or where
repeated queries are being made
against the same file, such as an
internet-based query tool performing
much the same query each time.

The default for CacheTables is N

PartialIndex All DSDs Setting PartialIndex to Y makes use
of an index even if you are not using
the first part of the index in the
query. It assumes that there are
some fields in the query that are
indexed.

Configure and Use

201

The default for PartialIndex is N.

Note: PartialIndex will never make
a difference unless statistics
(IndexStats=Y) is set, because
unless information is available to
confirm that it would be preferable to
use a subsidiary part of a key, it is
too dangerous (it is far more likely to
slow down a query than speed it up
unless statistics are employed).

Worked Examples

This section contains worked examples of improvements that were outlined in the
table above.

Prerequisites

To use the following examples, you must have the Books database installed. This
is shipped with the Transoft U/SQL product. Each of the examples makes use of
part of the Books database. For more information refer to the Demonstration -
Books Wholesaler section.

Where the example refers to specific indices, these are the basic indices in the
books database. Some data sources have more indices, but you can ignore these
for the purpose of these examples.

Note: To be able to use most of these performance enhancement settings, you
must first understand the data, and have a good understanding of what the query
plan means.

You can write many of the following queries more simply (without subqueries, for
example), but the following queries are valid, and demonstrate problems without
being too complex.

Using SetInIndexUse

Back to description

In the following query:

select * from customer where custcode in (select distinct custcode
from salehist where svalue=399);

the subquery returns the values (C011, C016). The query plan looks like:

(0) CUSTOMER INDEXED

(Query: 1) CUSTOMER INDEXED

Index No. 0

Lower : Set CUSTOMER.CUSTCODE to the Lowest of Subquery 1.1

Upper : CUSTOMER.CUSTCODE <= the Highest of Subquery 1.1

With Filter : CUSTOMER.CUSTCODE =any Results of Subquery 1.1

(Query: 1.1) SALEHIST SEQUENTIAL

FILTER : SALEHIST.SVALUE = 399

Transoft U/SQL User Guide

202

The engine jumps to the lowest value returned by the subquery, and stops when
it reaches the highest. However, this jumping can still be inefficient, especially
where the subquery returns values near the first and last in the file, when the
engine scans all the intervening space (in this example, the engine would read
C011, C012, C013, C014, C015, and C016).

To improve on these inefficiencies, you can use the SetInIndexUse=Y directive
to allow the engine to jump past the intervening gap. The query plan filter is
amended to:

(0) CUSTOMER INDEXED

(Query: 1) CUSTOMER INDEXED

Index No. 0

Lower : Set CUSTOMER.CUSTCODE to the Lowest of Subquery 1.1

Upper : CUSTOMER.CUSTCODE <= the Highest of Subquery 1.1

With Filter : CUSTOMER.CUSTCODE =inindex Results of Subquery 1.1

(Query: 1.1) SALEHIST SEQUENTIAL

FILTER : SALEHIST.SVALUE = 399

The word inindex in the filter line causes the engine to act as follows:

1. Jump to C011. This record is checked in the subquery result set, and is
acceptable.

2. Read C012. This record is not in the subquery. The next record in the
subquery result set is C016, so the query jumps to C016.

3. Read C016 normally, followed by C017. At CO17, the upper bound check
fails and the query completes.

Using ForceSimilarIndex

Back to description

In the example query:

select a.custcode, b.custcode from customer a, customer b where
a.custcode = b.custcode;

the following query plan is produced:

(Query: 1) CUSTOMER SEQUENTIAL

(Query: 1) CUSTOMER INDEXED

Index No. 0

Lower : Set CUSTOMER.CUSTCODE to CUSTOMER.CUSTCODE

Upper : CUSTOMER.CUSTCODE >= CUSTOMER.CUSTCODE

With Filter : CUSTOMER.CUSTCODE = CUSTOMER.CUSTCODE

In this case, you want to read the two files in the same order, so that C001 is
read out of file 'a' at the same time as it is read out of file 'b'. (This is especially
important if customer is a very large file). For this reason, it uses the index, even
though there is no condition in this example to imply that an index on file 'a'
would be of use.

Using the ForceSimilarIndex=Y directive informs the engine not to perform a
sequential scan, but instead, if the conditional field linking to the lower table is
available as an index, to use that to read the file. In this example, a.custcode

links to the indexed field b.custcode. The query plan therefore becomes:

Configure and Use

203

(Query: 1) CUSTOMER INDEXED

Index No. 0

Lower :none

Upper :none

(Query: 1) CUSTOMER INDEXED

Index No. 0

Lower : Set CUSTOMER.CUSTCODE to CUSTOMER.CUSTCODE

Upper : CUSTOMER.CUSTCODE >= CUSTOMER.CUSTCODE

With Filter : CUSTOMER.CUSTCODE = CUSTOMER.CUSTCODE

With many data sources, this is a quicker than not using ForceSimilarIndex,
because when C001 is read in the first file, the whole block is read into memory.
Then, when the second file is read, this block is read into memory as well.

This directive is useful as long as the two files are running in parallel, because
most of the data read operations come from a cache rather than being read in a
random order. Obviously in the real world the data files will be much larger than
this (CUSTOMER only has 17 records), and reading in the correct order rather
than random access becomes much more significant.

This directive is recommended for C-ISAM, where the file handler always reads on
an index even for a sequential scan. For most other data sources the file handler
reads sequentially much faster than reading indexed, so setting this directive may
in fact slow down queries.

Using Index Statistics

Back to description

Note: In order to use Index Statistics the directive IndexStats must be set to Y,
for example, add IndexStats=Y to the Data Source Defaults section, of the
usqlsd.ini configuration file on UNIX or using the U/SQL Administrator on Single-
tier or Service Manager for Multiple-tier on Windows 2000 and Windows NT
Server.

To determine which index to use for a file, it helps to know how effective the
index is. For example, in the standard books database the table salehist has the
following index:

SALEHIST_IX001, which contains the fields, YEAR, PERIOD, CUSTCODE,
STKNUM, SVALUE.

The year is always 94. This means that using the year is of no real use, as you
are likely to get back the entire dataset. When you include period, there are 6
distinct values (94/1, 94/2, 94/3, ..., 94/6). When you include custcode, there
are 84 rows, and so on. If, for example, you have three parts of the index, you
can expect a number of rows defined as NROWS / 84 to be returned, which in this
case is 427/84, or approximately 5 rows.

As the dataset grows, you only need to generate these statistics if the data skews
differently. For example, if there are 1000 customers in four regions, and the
database grows to 10000 customers, but these customers are still in four regions,
the statistics do not need to be rebuilt, as the increase is fairly uniform. However,
if the salehist file grows from having only one year to having 10, that constitutes
a major change, because it changes from selecting all the rows to having 1/10 of
the rows against each value.

Transoft U/SQL User Guide

204

The statistics numbers are stored in a file called UDDSTATS in the database. The
number of rows is stored, as before, in UDDTABLES under the column NROWS.
The statistics numbers are broken down by tablename, index number, and part-
of-index. For example, for books.udd, the statistics are as follows:

tabname indno part1 part2 part3 part4 part5

BUDGET 0 1 4 16 192 NULL

CUSTOMER 0 17 NULL NULL NULL NULL

OLINE 0 28 71 NULL NULL NULL

ORDERS 0 28 NULL NULL NULL NULL

SALEHIST 0 1 6 84 406 427

STOCK 0 60 NULL NULL NULL NULL

In each case, there is only one index per table, and in each case at the final part
all the rows are accounted for, since these are all unique indices.

This is most useful where there are multiple indices on a table, when the query
planner can examine the indices for their effectiveness. However, there can even
be differences in query execution with one single indices. Take, for example, the
following query:

select a.custcode, a.cust_name, b.svalue from customer a, salehist b
where a.custcode = b.custcode and b.year=94 and b.period=1;

It can be executed in one of two ways:

�� Use year and period to select values in salehist, then use a unique key of

custcode to access the customer file. Under the current statistics, this

gives 427/6 rows for the first section (a cost of 69.5). For the second
section, multiply the rows so far (69.5) by the expected rows at this level:
17/17 (1 row), giving a cost of 1*69.5 for this level. If you add this to the
first level, this gives a cost of 139.

�� Scan the customer file and then use year / period / custcode to access

the salehist file. This has a scan of 17 records of the customer file, so

the cost of level 1 is 17. Accessing the salehist file using year / period /

custcode gives an expected 427/84 rows, or 5.08. If you multiply by

expected rows again, you get 86.4. Added to the 17 for the first level, this
gives a total cost of 103.

The query plan produced before running the usqlstats utility is:

(Query: 1) SALEHIST INDEXED

Index No. 0

Lower : Set SALEHIST.PERIOD to 1,

Set SALEHIST.YEAR to 94

Upper : (SALEHIST.YEAR <= 94 and SALEHIST.PERIOD <= 1)

With Filter : (SALEHIST.YEAR = 94 and SALEHIST.PERIOD = 1)

(Query: 1) CUSTOMER INDEXED

Index No. 0

Lower : Set CUSTOMER.CUSTCODE to SALEHIST.CUSTCODE

Upper : CUSTOMER.CUSTCODE <= SALEHIST.CUSTCODE

Configure and Use

205

With Filter : CUSTOMER.CUSTCODE = SALEHIST.CUSTCODE

This example demonstrates that it is better to scan the first file sequentially, then
to use a much better index, than to have an index for each file (including having
a unique index for the second). This is often the case in a real-world situation, as
it is often better to concentrate on using a very good index on the largest file in a
query than to be concerned about scanning small ones.

The index statistics are also used for distinct jumping. For example, the query:

select distinct year from salehist;

expects only one row returned, so will always choose to use the index. However,
the following example:

select distinct year, period, custcode, stknum from salehist;

does not use the index to jump, as it expects 406 rows, by the time jumping itself
is added (performing an indexed read after each record), the time taken to use
jumping would be greater than the time to scan the file.

To produce index statistics for the database:

1. First ensure you have the UDDSTATS file within the database. To
determine if this is present, do:

select * from uddstats;

If this does not return a table, you must export, recreate and re-import the
database. Before re-importing, ensure the directive IndexStats=Y is set.

2. Set up a DSN on a Windows system, which can access the data through
Win U/SQLi.

3. Start a DOS window and run the usqlstats utility from either the U/SQL CD
or downloaded from the FTP site (see Installing the usqlstats utility from
the ftp site section). To run the usqlstats utility, type:

usqlstats books.udd

amending "books.udd" to whatever the data source name is under
Windows. For more information see the usqlstats utility section.

After running the usqlstats utility on books.udd the following query plan is
generated:

(Query: 1) CUSTOMER SEQUENTIAL

(Query: 1) SALEHIST INDEXED

Index No. 0

Lower : Set SALEHIST.CUSTCODE to CUSTOMER.CUSTCODE,

Set SALEHIST.PERIOD to 1,

Set SALEHIST.YEAR to 94

Upper : ((SALEHIST.YEAR <= 94 and SALEHIST.PERIOD <= 1) and

CUSTOMER.CUSTCODE >= SALEHIST.CUSTCODE)

With Filter : ((SALEHIST.YEAR = 94 and SALEHIST.PERIOD = 1) and

CUSTOMER.CUSTCODE = SALEHIST.CUSTCODE)

Using overlapping index fields

Back to description

Transoft U/SQL User Guide

206

In some complex data tables, there may be several overlapping fields. If these
fields constitute an index, it is possible for one field to be selected, and the query
planner not to know that it forms an indexable column. For example, the
customer file:

create table CUSTOMER (

CUSTCODE char(4),

CUST_NAME char(30),

CUST_REGION char(6)

);

create unique index CUSTIX on CUSTOMER (CUSTCODE);

is set up in books.ufd with fields as follows:

CISAM_FIELD(tabname,fldname, type,length,offset,ndec, ...)

"CUSTOMER", "CUSTCODE", "char", "4", "0","0", ...

"CUSTOMER", "CUST_NAME", "char","30", "4","0", ...

"CUSTOMER", "CUST_Region","char", "6", "34","0", ...

If you add two additional overlapping fields:

"CUSTOMER", "CUSTCD2", "char", "2", "0","0", ...

"CUSTOMER", "CUSTCD3", "char", "8", "0","0", ...

which appear when a select * is performed, for example:

CUSTCD3 CUSTCD2 CUSTCODE CUST_NAME CUST_Region

C001Alde C0 C001 Alden &
Blackwell

EAST

C002Book C0 C002 Book Bargains
Oxford

WEST

C003The C0 C003 The Bookcentre WEST

CUSTCD2 is simply the first two characters of the CUSTCODE field, and CUSTCD3
includes the first four characters of the CUST_NAME field. Then, if you run the
following query:

select * from customer where custcd3="C001Alde";

it would normally scan the database, since CUSTCD3 is not defined in the index
(only CUSTCODE is). If alternative indices have been activated, the query is
translated into:

select * from customer where custcd3="C001Alde" and custcode =

{fn left("C001Alde",4)};

You can use the additional part to perform an indexed search. This will work for
more complex queries and indices, including multi-part indices.

To activate alternative indices, first check to see if the UDDALTIND table exists.
To check if the UDDALTIND table exists, perform:

select * from uddaltind;

If you get an error, the table does not exist.

If the table exists, you only need to update the UDD.

If the table does not exist, you must export, recreate and re-import the database
with the directive AlternativeIndex set to Y.

Configure and Use

207

During the import process, all possible alternate indices are generated
automatically, and stored in the UDDALTIND table. However, when you use an
info command on a table, only genuine (not alternative) indices will appear, and
the showplan shows which genuine index of the table is being used.

Distinct Jumping

Back to description

Distinct jumping is turned on by default.

Example 1

For example, to work out in which years sales have been made, use:

select distinct year from salehist;

The data at the start of the file is:

YEAR PERIOD CUSTCODE STKNUM SVALUE

94 1 C001 005269 71.6

94 1 C001 023021 484.5

In the first query, after the value 94 has been read, there is no point reading any
more records of year=94. Because of this, the engine increments the value it is
reading, to 95, and jumps to that point. In this example, there are no records
with a year = 95, so the query ends.

The query has opened a file, read the first record, performed an indexed search,
and stopped. In this way, the query performs two read operations rather than
427 (one for every record in the file).

Example 2

The following example is slightly more complex, for years and periods, using the
same data:

select distinct year, period from salehist;

The same basic principle applies as in Example 1, but this time the second data
item is incremented. In this way, when 94 1 has been read from the file, the
period is incremented to 2, and the engine jumps to that value. It finds 94 2, and
stores that as another record. It continues incrementing until 94 6, when the
increment finds no more values (there is nothing beyond 94 7). In this case,
there have been 12 read operations rather than 427.

Distinct jumping only applies when all the items being examined are present at
the beginning of an index.

In the example:

select distinct cust_region from customer;

the customer file index is:

create unique index CUSTOMER_IX001 on CUSTOMER (CUSTCODE);

As cust_region is not contained within this index, the query planner performs

the usual scan of the table.

In some cases, the query planner adds the distinctness. For example:

select min(year) from salehist;

Transoft U/SQL User Guide

208

Since only distinct values can affect this query, the planner effectively amends it
to be:

select min(distinct year) from salehist;

From this point, the planner can use distinct jumping. This applies to both the
min and max operators.

In a similar way, the following query finds all the queries for any year where
customer C001 has ordered anything:

select * from salehist where year in (select year from salehist where
custcode='C001');

The subquery performs identically, regardless of whether it has multiple values or
distinct values, that is, whether it returns ('94') or ('94', '94', ...). You can
therefore translate the query into:

select * from salehist where year in (select distinct year from
salehist where custcode='C001');

Once again, the engine can jump in the subquery.

Configure and Use

209

Query Planner Hinting

In U/SQL Revisions 3.10.400 and above, you can use hints in the Query Planner.
You do this by placing hints immediately after the SELECT statement.

There are two types of query planner hinting. They are:

/** INDEX(table,index)
*/

To enforce the use of a specific index when
accessing table.

/** ORDERED */ To join the tables in the order supplied, and not to
look for a better plan.

You must place these hint comments immediately after the SELECT statement,
but you can intersperse them with additional comments.

The index can be referred to by number or name.

The old style of comment, using '#' to comment out the remainder of the line,
can also be used, immediately followed by a '*' to form a hint-style comment.

Query hinting applies to all DSDs.

Using Query Hinting

Transoft recommends that you make use of the performance optimizations in this
manual as far as you can. After you have implemented the optimizations, they
are activated automatically for all relevant queries.

However, there may be circumstances where your knowledge of the database
contents makes a particular query plan obvious to you, but not to the query
planner. In these circumstances, you can direct the query planner, as shown
below, to perform the table in a particular way.

Note: The query planner will never override the user, so a badly-hinted query
may be far worse than no hinting at all.

Specifying the order of tables

To dictate the order of the tables in a query plan, you can add the /** ordered

*/ comment to the query. For example:

select /** ordered */ table1.* from table1, table2, table3;

In this example, the search begins at table1, then searches table2, then

searches table2. As with all hints, you can use lower, upper or mixed case.

Specifying the index to use

To dictate which index is used in a query, you can use the /** index */ hint. For

example:

select /** index(salehist, salehist_ix001) */ year, period from
salehist;

In this example, salehist_ix001 is the index name obtained from an info

command. This example directs the query planner to consider no other index for
use on this table, just to use the index specified.

Transoft U/SQL User Guide

210

To direct a table to scan sequentially, using no index at all, you can use the
following format, which specifies none as the index to use:

select /** index(salehist, none) */ year, period from salehist;

Specifying the order of tables and which index to use

You can combine the instructions to specify the order of tables, and which index
to use. For example:

select /** ordered index(table1, index1) index(table2, index2) */ *
from table1, table2;

These instructions can be in any order, but must be located directly after the
select statement.

Configure and Use

211

Sample Applications

Demonstration - Books Wholesaler

A demonstration of an application for a Books Wholesaler is supplied with the
U/SQL Client software. This chapter describes what is included in the Books
Wholesaler demonstration.

Single-tier

Windows

On the PC, under the U/SQL Client software installation directory (by default,
C:\Program Files\USQLC), there is the directory BOOKDEMO. This contains
three subsubdirectories, DATA, BIN, and SOURCE. These subdirectories contain
the following files:

DATA Contains the application data files and the UDD, booksw.udd
for the supplied data source driver, which are used to run the
Books application.

BIN Contains the executable books32.exe (a Visual Basic
application) and an Access database, books32.mdb, which can
also be used to run the Books application without using U/SQL .

SOURCE Contains the Visual Basic source to the Books application.

Multiple-tier

UNIX

The relevant data files and the UDD, books.udd are contained on the host in an
example directory, below the base directory of the U/SQL Server software
installation (by default, /usr/usqls/example).

Windows NT Server

The relevant data files and the UDD, books.udd are contained on Windows NT
Server, in the directory BOOKDEMO, below the base directory of the U/SQL
Server software installation (by default, C:\USQLCS\BOOKDEMO).

Windows

On the PC, under the U/SQL Client software installation directory (by default,
C:\Program Files\USQLC), there is the directory BOOKDEMO. This contains
two subdirectories, BIN and SOURCE. These subdirectories contain the following
files:

BIN Contains the executable books32.exe (a Visual Basic
application) and an Access database, books32.mdb, which can
also be used to run the Books application locally on the client

Transoft U/SQL User Guide

212

platform without involving the U/SQL Server.

SOURCE Contains the Visual Basic source to the Books application.

Sample Data

The following diagram, using Microsoft Access, shows the simple data structure
for the Books Wholesaler example. These are the six files or tables in the system.
This is the logical view of the data with the lines drawn between the tables
showing the logical joins:

Note: Only the primary data connections are included to improve clarity.

The UDD contains details of these tables and their fields or columns.

View the UDD for COBOL Data Source

If you have been supplied with a U/SQL Manager for your COBOL data source,
you can view the contents of the books UDD (Single-tier: booksw32.udd;
Multiple-tier: books32.udd).

From the Start menu double-click on the U/SQL Manager icon in the U/SQL Client
program group. The Main Menu is displayed:

Configure and Use

213

Click Open Data Dictionary. The Connect to Data Source dialog box is
displayed:

Select the books32.udd data dictionary and click Open. The Data Dictionary
Maintenance dialog box is displayed:

This shows the Tables available from the UDD.

To view the details of any Table, either select it and then click Open or double-
click the table name. The Table Maintenance dialog box for that table is
displayed:

Transoft U/SQL User Guide

214

You can then view the File, Data and Keys information. Refer to the Planning to
Use U/SQL Manager section for details on how to use the U/SQL Manager.

Running the Books Demonstration Application

Ensure you have installed the U/SQL Client and Server software successfully and,
for Multiple-tier, that the U/SQL Server is running.

To run the Books Wholesaler demonstration application, double-click on the
Books icon from within the U/SQL Client program group.

The Client/Server Demo Logon dialog box is displayed:

This contains the following options:

�� Local Server (if you have a Single-tier version of U/SQL Adapters)

�� Remote Server (for example, on a UNIX or Windows NT Server host)

�� Local Microsoft Access (using a Microsoft Access database making no use
of U/SQL Adapters)

After making the appropriate selection, the following main form menu is
displayed:

Configure and Use

215

Select the first item by clicking the Order Details button. The Client/Server
Demo Order Display dialog box is displayed:

This demonstrates a four-way join between the ORDERS, OLINE, STOCK and
CUSTOMER files or tables. Any order number in the range 123001 to 123027 can
be entered. After entering the order number click OK.

For the second example, click the Find Book button on the main form menu. The
Book Finder dialog box is displayed:

Transoft U/SQL User Guide

216

As the application is invoked, the Stock Details section of the dialog box is filled
with all the categories of book that the wholesaler sells. Selecting any one of the
categories, for example, ‘C for Rookies’, results in the individual book title details
for that category being displayed from the STOCK file.

For the third example, click the Graph Sales button on the main form menu. The
Graph Display dialog box is displayed:

You can select the number of periods you require, by region or by category of
book, and you can experiment with various forms of graph. This provides an
Executive Information System in ‘real time’ for non-relational data.

For the last example, click the Budget Details button on the main form menu.
The OLE link to Excel dialog box is displayed:

You must have Microsoft Excel 4, or higher, on your PC for this part of the
demonstration. Make your selection for a particular quarter, the actual region or
book category from the combo boxes and the Analysis Type (either Category
within Region or Region within Category), then click the Excel OLE button. The
application then invokes Microsoft Excel and, using OLE and a macro, populates a

Configure and Use

217

spreadsheet via an SQL SELECTion of the data.

Sample SQL Queries

Refer to the Querying and Manipulating Data section for examples of SQL syntax
for querying and manipulating data for ODBC 2 compliance. The examples shown
make use of the Books Demonstration data provided with your data source. In
general, you will be able to reproduce these examples yourself.

View Source of the Demo

Windows

On the PC, under the U/SQL Client installation, there is the directory
BOOKDEMO. This includes the sub-directory SOURCE, which contains the Visual
Basic source to the Books application. You can use this to see how the various
functions have been implemented. In order to take advantage of this you must
have a development copy of Microsoft Visual Basic 5 Professional installed on your
PC.

Transoft U/SQL User Guide

218

Writing Applications Using U/SQL To Access Your Data

Revision 3.00 of the U/SQL ODBC drivers include improved support for some of
the 32-bit data access methods available from Windows RAD tools such as
Microsoft Visual Basic. The following diagram illustrates the different methods
available for accessing data:

Data Access Options for Windows Developers

Data Access Objects (DAO)

Data Access Objects are available to Visual Basic and Visual C++ developers and
Microsoft Office applications, and represent the easiest and most common
method of accessing data from Microsoft applications. DAO uses the Microsoft JET
engine, used by Microsoft Access, which makes it particularly effective when used
to retrieve data from an Access database as well as an ODBC data source.

However, although it is possible to use DAO to connect to and retrieve data from
ODBC data sources, this is not a particularly effective route to take. As the
previous diagram shows, in this scenario the JET engine will still be being used,
which is inefficient as it can often be duplicating processing which is either being
performed by the ODBC driver manager or the ODBC driver itself.

This situation was improved when Visual Basic 5.0 was released, as it offered an
improvement to connecting to ODBC data sources with DAO, called ODBCDirect.
When this property is set (as the Type argument in the CreateWorkspace
method) it prevents the JET engine from performing any processing and just
implements the DAO object model on top of the ODBC API. This results in thinner
client applications and faster query execution, as the JET engine no longer needs
to be loaded or used, however there will be the loss of some JET specific
functionality when using ODBCDirect - for a full description please consult the
Microsoft Visual Basic 5.0 Books Online documentation.

Configure and Use

219

Example DAO Code

A code example from Visual Basic 5.0:

Dim wsJET As Workspace
Dim wsODBC As Workspace
Dim m_daoDB As Database
Dim m_daoRS As Recordse
Dim m_daoField As Field
Dim szConn As String

' Create one workspace of each type
Set wsODBC = CreateWorkspace("ODBCWorkspace", "admin", "", dbUseODBC)
Set wsJET = CreateWorkspace("JETWorkspace", "admin", "", dbUseJet)

' Append workspaces to collection
Workspaces.Append wsODBC
Workspaces.Append wsJET

'N.B. JET database & ODBCDirect connection objects are
interchangeable
szConn = "ODBC;DSN=BOOKSW32.UDD;"

' Open an ODBCDirect connection
Set m_daoDB = wsODBC.OpenConnection("ODBCDirect", dbDriverComplete,
False, szConn)
Set m_daoRS = m_daoDB.OpenRecordset("Select * from customer",
dbOpenSnapshot)

For Each m_daoField In m_daoRS.Fields

 ' Runs through columns in recordset

Next

m_daoRS.Close
m_daoDB.Close

' Open a JET connection
Set m_daoDB = wsJET.OpenDatabase("BOOKSW32.UDD", dbDriverComplete,
False, szConn)
Set m_daoRS = m_daoDB.OpenRecordset("Select * from customer",
dbOpenSnapshot)

For Each m_daoField In m_daoRS.Fields

 ' Runs through columns in recordset

Next

m_daoRS.Close
m_daoDB.Close

Remote Data Objects (RDO)

Introduced with the release of Visual Basic 4.0 (32-bit) (Professional & Enterprise
editions only), RDO offers easy and high-performance access to ODBC data
sources. In much the same way as when using DAO with ODBCDirect, as
described in the previous section, RDO is just a thin layer that operates directly
above the ODBC API and does not use JET at all. RDO has extensive support for
cursor libraries and an event model for trapping data events as they occur.

RDO is available only to developers using Visual Basic Professional or Enterprise
editions - Revision 1.0 of RDO was introduced with Visual Basic 4.0; Revision 2.0
of RDO is available with Visual Basic 5.0. Revision 2.0 has relaxed the
requirements for ODBC conformance from revision 1.0's requirements, which
means that U/SQL Adapters is now compatible with RDO revision 2.0, subject to
certain conditions mentioned in the section Notes on RDO, below.

Transoft U/SQL User Guide

220

Example RDO Code

A code example from Visual Basic 5.0: (ensure you have included Microsoft
Remote Data Objects 2.0 in your project references)

Dim m_rdoMainEnv As rdoEnvironment
Dim m_rdoConn As rdoConnection
Dim m_rdoRes As rdoResultset
Dim tmpField As rdoColumn

Set m_rdoConn = New rdoConnection
m_rdoConn.CursorDriver = rdUseOdbc
m_rdoConn.Connect = "DSN=booksw32.udd;"
m_rdoConn.EstablishConnection

Set m_rdoRes = m_rdoConn.OpenResultset(szSQL,
rdOpenForwardOnly)

For Each tmpField In m_rdoRes.rdoColumns

 ' This code loops through each column in the resultset

Next

Notes on RDO

The important points to note in the above code are:

�� Cursor Type - Note that the CursorDriver property of the connection is
set to rdUseODBC before the connection is opened. This is important
because RDO supports quite a rich set of cursor drivers and properties that
are not implemented in the U/SQL ODBC Drivers, so RDO must know that
the ODBC driver manager will be implementing them for this connection.

�� Recordset Type - Note the setting of the final parameter of the
OpenResultset call. The rdOpenForwardOnly setting opens a forward-
scrolling recordset, which is the default recordset used by RDO. If your
recordset needs to be updateable or have unrestricted movement then the
U/SQL ODBC driver has been tested with rdOpenKeyset based recordsets,
which should provide all the functionality required.

ActiveX Data Objects (ADO)

ADO is Microsoft's interface to OLE DB data access. OLE DB allows access to
relational and non-relational data, wherever it may reside. Theoretically, data
may be queried from such sources as ODBC data sources, word processor
documents and e-mail messages. ADO can be used from RAD tools such as Visual
Basic 5.0, but is also designed to be used in Web pages, such as Active Server
Pages, over the Internet / Intranet.

When connecting to an ODBC data source OLE DB utilises the 'Microsoft ODBC
Provider' to bring in the ODBC driver manager and use the standard ODBC
interface to access the data.

At the time of writing the latest revision of ADO & OLE DB is 1.5, and is shipped
as part of Microsoft's Data Access Components. U/SQL Adapters ODBC Drivers
have been tested with this revision and, subject to certain conditions mentioned
in the section Notes on ADO below, function with this revision.

Example ADO Code

Configure and Use

221

A code example from Visual Basic 5.0 (ensure that you have included Microsoft
ActiveX Data Objects in your project references)

Dim m_ADOConn As ADODB.Connection
Dim m_ADORes As ADODB.Recordset
Dim tmpField As ADODB.Field

m_ADOConn.Mode = adModeReadWrite
m_ADOConn.IsolationLevel = adXactChaos
m_ADOConn.Open "DSN-BOOKSW32.UDD",""

Set m_ADORes = New ADODB.Recordset
szSQL = "SELECT * FROM customer;"
m_ADORes.Open szSQL, m_ADOConn,
 adOpenForwardOnly,
 adLockPessimistic

For Each tmpField In m_ADORes.Fields

' This code loops through each column in the resultset

Next

or a more concise method, in an Active Server Page for example, would be:

Set RS = CreateObject("ADODB.Recordset")
RS.Open "select * from stock;",
 "DSN=BOOKSW32.UDD;UID=admin;PWD=",
 adOpenForwardOnly,
 adLockPessimistic

Notes on ADO

The important points to note about the above code are the final two parameters
on the recordset's Open method; these are the CursorType and LockType of the
recordset being opened. The U/SQL ODBC Drivers only fully support forward
scrolling recordsets, so it is important to explicitly set the CursorType parameter
to adOpenForwardOnly when opening a recordset. The LockType setting is less
important, but adLockPessimistic or adLockReadOnly are the only settings
recommended for use with the U/SQL ODBC drivers.

Positioned Updates. Attempting to edit and update an ADODB.Field object from
an open recordset will generate an error; all updating of data through ADO using
U/SQL Adapters should be performed by executing SQL rather than by updating
Field objects.

ODBC API

All of the previous methods of connecting to ODBC data sources, DAO, RDO &
ADO have provided object models and functionality that ultimately calls the raw
ODBC API functions. If you wish to achieve maximum performance from your
application then you can call ODBC API functions directly from your application.

The benefits of calling ODBC functions directly is that you have full control over
exactly what code is executed against the ODBC driver, and you have no code
layers between your application and ODBC, so you should achieve the best
possible performance for your application. The drawback to developing using
direct ODBC API calls is that is requires a great deal more code from the
application to implement even the most basic functionality and error handling.

Choosing The Data Access Method

Transoft U/SQL User Guide

222

Some of the interface data access methods discussed are only available to certain
development tools; RDO is only available with the higher end editions of Visual
Basic, and if you are developing a 16-bit Visual Basic application you will not have
RDO or ADO available to you at all. Delphi provides its own database engine,
which you can use to connect to ODBC data sources with, or you can use direct
ODBC API calls.

However, assuming you have the choice of the four options discussed; DAO,
RDO, ADO and ODBC API then you will need to choose one method over another,
as they are not particularly interchangeable - although you can re-use
connections between RDO and ODBC API calls if you wish.

The order in which the methods were discussed was, in our opinion, in order of
ease-of use. For example both DAO and RDO have visual data source components
that other controls such as grids can be 'bound' to; in this manner you can
implement a fully-functional database 'front-end' with hardly any application
code. In this respect there is little difference between DAO and RDO, although
DAO provides a richer object model for the developer because of the JET engine.

At the time of writing, ADO has a visual component for Web pages, but not for
use in Visual Basic, so an application written using ADO would need to implement
the front-end functionality itself. An application written in pure ODBC API calls
would need code to implement both the ODBC functionality and the front-end
functionality.

The DAO, RDO, ADO and ODBC API order is also applicable in relation to the
amount of development time required for implementing an application using each
method, which is also related to the relative ease-of-use of each method.

In most cases the extra development time needed for writing with the ODBC API
probably outweighs the performance increases you gain from using it, especially
as RDO offers all the performance benefits of direct ODBC access together with
the bound controls of DAO. DAO's ODBCDirect option allows developers to
improve the performance of legacy code by simply changing the types of
workspaces their application creates, rather than having to redevelop using direct
ODBC access.

Probably the most important consideration is the scenario in which your
application is going to be used; RDO is designed for a client-server situation,
where the client is kept as lightweight as possible and the server does all the
work. ADO further extends this model by providing for web-based clients and
multiple relational and non-relational data sources. DAO, on the other hand, is
the native Access engine which also happens to be able to connect to ODBC data
sources; this is useful is you need to combine a local Access database with data
from an ODBC data source for any reason, but otherwise it is not the best method
of connecting to ODBC data.

Applications which use DAO or RDO will need less application code, resulting in a
smaller executable, but will require more components at run-time - whereas
ODBC API applications will tend to be larger but require fewer run-time
components.

Configure and Use

223

General UDD Information

Overview

This section provides an overview of the dictionary technology and the steps
involved in creating a Universal Data Dictionary (UDD) for U/SQL. Subsequent
sections provide details on how to set up a UDD for the following non-relational
data sources:

�� C-ISAM

�� Transoft’s Business Basic ISAM

�� Transoft’s U/FOS hierarchical database management system

�� COBOL.

Note: Other data source drivers are continually being added to U/SQL, so for a
complete list of data sources supported, contact Transoft.

This section also covers Expression Handling and its syntax. For example, to
differentiate between multiple record types within the same physical file, as
separate logical tables, you are able to specify an expression that uniquely
distinguishes each record type from the others.

U/SQL employs a two-level data dictionary technology, to provide a ‘relational
view’ of your non-relational data.

The UDD contains a set of system tables that provides a relational description of
your data. It also contains the Universal File Dictionary (UFD), which is a further
set of tables that describes the physical structure of the files being accessed.

Examples of UDD system tables are UDDTABLES and UDDCOLUMNS. Examples
of UFD system tables are CISAM_TABLE, CISAM_FIELD, CISAM_INDEX.

The following diagram shows a simple data structure for the Books Wholesaler
Demonstration. These are the six tables in the system. This is the relational view
of the data with the lines drawn between the tables showing the logical joins:

Transoft U/SQL User Guide

224

Note: Only the primary data connections are included to improve clarity.

The UDD contains details of these tables and their column names. The UFD
includes details of:

�� What the physical files are called on disk, for instance, the CUSTOMER
table may be called CUST.DB.

�� What the files contain in terms of fields, their data types and byte offsets.

ODBC-enabled products can only attach to what they believe to be relational
tables and access them via SQL. Hence, these products see only the relational
view of the U/SQL dictionary.

You can set up multiple UDDs, as you may want different users of the ODBC-
enabled products to have different views of the same data. For example, you may
not want some users to be able to view a payroll system. Alternatively, with a
single UDD you can use GRANT and REVOKE security to exclude certain users
from the payroll data tables and or particular columns. For example, the salary
column. Refer to the GRANT and REVOKE Security section.

Configure and Use

225

Creating a UDD

To create a new UDD for your application, you first describe the physical
structure of your data files and their content in a UFD text file, for example,
dictionary.ufd. These descriptions in this file are imported into the UFD part of
an ‘empty’ dictionary, which is then updated to automatically create the
‘relational view’ to complete the dictionary.

U/SQL supports an ever-increasing number of non-relational data sources, for
example, C-ISAM, Business Basic ISAM, U/FOS hierarchical database
management system, and so on. Each non-relational data source has differing:

�� File structures and access methods. For example, hierarchical, ISAM,
sequential, direct, linked list.

�� Indexing. For example, single index, multiple indexes, duplicates allowed.

�� Record structures, including multiple records in the same file,
differentiated by a record type field or expression.

�� Data types of fields, for example, for COBOL, ‘C’, Business Basic, and
other specifics such as the handling of dates and ‘nulls’.

The amount of UFD information necessary to describe any non-relational data
source is dependent on its complexity. For example, U/FOS being a hierarchical
database management system is much more complex to describe than Business
Basic ISAM or C-ISAM.

The following sections discuss:

�� Creating a Text File

�� Comma Delimited UFD File

�� Creating the UDD from the UFD Text File

�� Amending the Data Dictionary.

Creating a Text File

The data dictionary, for C-ISAM, Business Basic ISAM or U/FOS, is specified by
creating a text file, for example, dictionaryname.ufd. It consists of a number of
sections, each of which relates to a table in the UFD. Each table is specified as an
entity, and a table type can be repeated as any number of entities. A table entity
consists of the following:

table_name1(colname_1,colname_2,...)
----- ----- -----
R1C1 R1C2 R1C3
R2C1 R2C2 R2C3
Comment.
R3C1 R3C2 R3C3
*

�� The first line contains the name of the table followed by the names of the
columns delimited by commas and enclosed in parentheses.

�� The next line contains a template which describes the position and
maximum length of the data for each column. The format of this template
is one or more groups of dashes, where the position and length of each
group specifies the location and maximum length of the following data.

Transoft U/SQL User Guide

226

The amount of white space between the groups of dashes is not
significant.

�� There then follows one or more rows of data to be inserted into the UFD
table. The row data must match the positions specified in the template.

�� ‘#’ in the first column of a line marks the beginning of a comment.

�� ‘\’ in the last column of a line signifies it continues on the next line.

�� Separate tables are delimited by an asterisk '*' in the first column on a
line.

Comma Delimited UFD File

Some of the lines in the UFD text file can become very long, particularly if many
index key components are required, making it difficult to manipulate . To
overcome this a comma delimited form of the UFD file can be specified.

This is achieved by removing the template and specifying each field item for each
row of data separated by commas. String values must be enclosed in double
quotes, “.

The special characters still apply; ‘#’, comments character, ‘\’ continuation
character and ‘*’ end of table character.

An example table:

table_name1(colname_1,colname_2,...)
R1C1,”R1C2”,R1C3
12345,”Joe Smith”,5678.76
Comment.
R3C1,”R3C2”,R3C3
*

Creating the UDD from the UFD Text File

Once you have created the UFD text file that describes the physical structure of
your data files and their content, you proceed to create the UDD as follows:

�� For Multiple-tier UNIX platforms, you create your UDD on the server using
the Interactive U/SQL utility, usqli.

�� For Multiple-tier versions on Windows NT Server and for Single-tier
versions (if available), you create your UDD using the Interactive U/SQL
utility, Win U/SQLi, on a client PC.

UNIX

On Multiple-tier UNIX platforms, once you have created the text file containing
the entries defining the UFD structure of your data files, for example, demo.ufd,
you must go through a three-step process to create the UDD:

1. In the bin directory below the base directory where you loaded the U/SQL
Server software, for example /usr/usqls/bin, create an empty UDD, for
instance, demo.udd, by running the Interactive U/SQL utility usqli, with
the -c switch:

cd /usr/usqls/bin

./usqli -c demo.udd

Note: The dictionary must have a .udd extension.

Configure and Use

227

2. Next, you must load your UFD data, demo.ufd, into the UDD. This is
achieved by running usqli again with just the name of the UDD:

./usqli demo.udd

and then, at the ‘U/SQL’ prompt:

U/SQL> import demo.ufd

U/SQL> quit

3. Finally, you must create the UDD, from the UFD information, by running
usqli with the -u switch:

./usqli -u demo.udd

The message: All tables successfully updated, is displayed.

There are conditions where you do not get this message, for example, due
to a missing key component in an index. To determine which table has the
problem and what it is, interrogate the log file. Refer to the section How to
Query the Log File the Configure & Use manual.

or you can update one table at a time:

./usqli -u demo.udd AREAS

./usqli -u demo.udd COUNTIES

./usqli -u demo.udd CUSTOMERS

The UDD, demo.udd, is now ready for use.

To list the tables just loaded into the UDD, use the tabs command.

./usqli demo.udd

and then, at the ‘U/SQL’ prompt:

U/SQL> tabs

.

. [your table names are listed]

.

U/SQL> quit

Note: Ensure you perform the update step (3), otherwise the UDD is left
in an incomplete state and is unusable.

Single-tier and Windows NT Server

If you have a Single-tier installation, or if you have a Multiple-tier version where
your U/SQL Server software is installed on Windows NT Server, then you use the
Interactive U/SQL utility, Win U/SQLi to create your UDD. Win U/SQLi is
supplied with all U/SQL Client software installations.

Once you have created the text file containing the entries defining the UFD
structure of your data files, for example, demo.ufd, you go through the following
process to create the UDD:

1. If you have installed Multiple-tier U/SQL on Windows NT Server, ensure
that the U/SQL Server is running.

2. Invoke Win U/SQLi on your client PC where you have the demo.ufd UFD
text file.

3. Create a new UDD, for example, demo.udd, to which the UFD text file will
be imported, by either clicking the Create a new UDD icon from the
toolbar, or selecting New UDD from the File menu. Select where you

Transoft U/SQL User Guide

228

want the UDD to be created, that is Local for Single-tier and Remote for
Multiple-tier.

You will then set up the data source within the U/SQL Administrator. (For
Single-tier see the U/SQL Administrator section for more information. For
Multi-tier see the U/SQL Administrator Facilities section for more
information.)

4. Click the Import Tables icon or select Import from the Table menu.
Select the UFD text file you have created, in this case, demo.ufd.

5. An Import Tables dialog box is displayed, showing each table as it is
imported. Each successfully imported table has Imported displayed to the
left of the table name.

6. After all the tables have been imported, click OK.

7. Next click the Update selected tables icon, or select Update from the
Tables menu. Select the appropriate data source from the dialog box, and
click Update. This creates the UDD tables from the UFD tables.

8. The message: All tables successfully updated, is displayed.

There are conditions where you do not get this message, for example, due
to a missing key component in an index. Interrogate the log file to obtain
which table has the problem and what it is. Refer to the How to query the
Log File section.

9. Click OK.

10. You can check that the new UDD is correct by performing one or more
queries on it using Win U/SQLi.

Note: Ensure you perform the update step 7, otherwise the UDD is left in an
incomplete state and is unusable.

Amending the Data Dictionary

If any amendments are required then either:

�� The existing UDD must be deleted, the relevant changes made to the '.ufd'
text file and the steps repeated, in the above section, to create and load
the new UDD, or

�� If adding a new data file, a UFD can be set up simply for that table and
imported on its own. If amending a table in any way, it is recommended
that the whole dictionary be recreated from the amended file. It is also
recommended that backups be taken of the UFD and UDD files prior to any
amendment.

Configure and Use

229

Expression Handling

If you have multiple record types in the same physical file, you need to decide
whether you want to describe each record type as a separate logical table,
independently accessible via ODBC-enabled products. If you do, then you also
need to know how each record type can be distinguished from the others. This is
usually determined by one or more fields having particular values, known as
differentiating values.

When you subsequently access each logical table via SQL, the U/SQL Server will
automatically use the differentiating values or expressions to return only the
appropriate rows (records) from the physical file.

IMPORTANT: If the file uses arrays, the data items which determine record type
cannot be within the repeating group, since this is evaluated AFTER the record
type is determined.

U/SQL includes an expression handler that accepts these differentiating values or
expressions to determine the appropriate record type to be selected.

For example, consider an EMPL employee file which has two record types – the
Employee Master Record and the Employee Salary Record. You could create two
logical tables, one called, say MASTER_EMPL and the other SALARY_EMPL.
The two record types are distinguished by the REC_TYPE field being “M” or “S”
respectively. Thus for the MASTER_EMPL table you insert the expression:

REC_TYPE=“M”

and for the SALARY_EMPL table the expression is:

REC_TYPE=“S”

Note: If you have multiple records or structures, in the same physical file, you
must define each one as a separate logical table.

This section covers the following topics:

�� Expression Syntax

�� Logical Operators

�� Comparison Predicate

�� BETWEEN Predicate

�� LIKE Predicate

�� Pattern Syntax.

Expression Syntax

The U/SQL expression handler conforms to the X/Open SQL syntax for the
WHERE clause search-condition that qualifies the selection of query rows.

Search conditions are one or more predicates, combined with the logical
operators AND, OR and NOT.

The names of columns (fields) in expressions are NOT case-sensitive.

Note: Sub-queries and ODBC functions within the search-condition are not
supported.

Logical Operators

Transoft U/SQL User Guide

230

The order of precedence among the logical operators is NOT, followed by AND,
followed by OR. The order of evaluation at the same precedence level is from left
to right. Parentheses can be used to change this order.

Comparison Predicate

A comparison predicate compares two values and has the form:

expression_1 comparison_operator expression_2

where comparison_operator can be any of the following:

= equal to

<> not equal to

> greater than

>= greater than or equal to

< less than

<= less than or equal to

The result is true or false, depending on the outcome of the comparison.

BETWEEN Predicate

A BETWEEN predicate tests whether a value is within a range of values and has
the form:

expression_1 [NOT] BETWEEN expression_2 AND expression_3

The predicate (without NOT) is equivalent to:

expression_1 >= expression_2 AND expression_1 <= expression_3

Using the keyword NOT negates the result in the manner of the NOT logical
operator.

LIKE Predicate

A LIKE predicate compares a column value with a pattern and has the form:

column_name [NOT] LIKE pattern_value

The column column_name must reference a character string column, and
pattern_value is a character string literal.

The result of the predicate is true or false depending on whether or not the value
of the column referenced by column_name conforms to the specified pattern.
Using the keyword NOT negates the result in the manner of the NOT logical
operator.

Pattern Syntax

Configure and Use

231

Within the character string literal represented by pattern_value in the above
example, characters are interpreted as follows:

�� The underscore character ‘_’ stands for any single character.

�� The percent character ‘%’ stands for any sequence of zero or more
characters.

�� All other characters stand for themselves.

For example:

�� LIKE '%X%' is true for any column value that contains the character X.

�� LIKE 'Y_' is true for any column that is two characters wide and starts

with the character Y.

Note: The character string literal can be bounded by either single quotes (') or
double quotes (").

Transoft U/SQL User Guide

232

Handling of Data Arrays

Handling of Data Arrays

Virtually every computer language supports data arrays, and it is not unusual for
legacy systems to store arrays in the data files. There is therefore, a need to be
able to map the contents of an array into the relational 'table/column' model.

This section describes the various issues that can arise, and explains the options
for mapping the data array in the UDD and the entries required in the Universal
File Dictionary (UFD) textual file to generate the functionality.

Although there are variations in the support for mapping data arrays in the
various U/SQL data source drivers, COBOL, U/FOS and so on, the principles
involved are common. The approach taken in this section is to define and
illustrate the issues in a way that will provide you with a level of understanding of
the various options.

Note: Refer to the sections Manually Create a COBOL UDD and Creating a UDD
for details on creating UFD textual representations of your data.

Terminology

Some documentation uses the term 'table of data' instead of 'data array'. This
section uses the term 'data array' so that there is no confusion over the use of
the word 'table' which has specific meaning in the 'Relational' context.

A data array can consist of one or more repeating elements. In the simplest case
the element can be a single character, therefore by implication a 'string' of
characters is stored in a 'character array'. However, in most cases, we would
consider the 'string' of characters as a single entity - we would map the 'column'
onto the storage for the entire string. The most common arrays are, therefore,
repeating elements of integers (number storage), strings (character storage) or
even structures (groups of fields).

In many cases the array is 'single-dimensional', in which case a single subscript
(index) is necessary to access the different elements. However, it is also possible
to address data storage in the form of a 'multi-dimensional' array, requiring two
or more subscripts (index or sub-index) to address each element.

With U/SQL, it is the Data Source Driver that determines how the data is
accessed, and although the data source driver may be linked to a language
product, it is often possible to mix modules written in different computer
languages and dialects in one application. For the purpose of simplicity and
clarity, the COBOL syntax and terminology is used in the following text and
illustrations.

Configure and Use

233

Mapping Array Elements to a Relational Model

Data arrays are common components of business data. You define data arrays by
including the OCCURS clause in the COBOL data description entry. For example:

03 SALES-TARGET PIC 9(8) OCCURS 3 TIMES.

There are two fundamentally different ways that these three fields can be
mapped onto a 'relational' table.

�� Consider each field as a separate column.

�� Consider each field as a single column in separate rows.

For example, if the data array was used so that the first element was for sales in
the USA, the second element for Europe and the third element for the rest of the
world (ROW), it would be possible to map this data array onto three columns.
This is known as a Flattened array, as it describes what happens when a COBOL
OCCURS is flattened out into individual unique fields.

USA_Target Europe_Target Rest_Target

1385 794 286

1245 2341 1860

etc. etc. etc.

One problem with this mapping technique is that if we add the columns we get a
total for each region, when perhaps we want to obtain an overall total.

To do this, we could map the data into a two column model by introducing a
subscript column (Region). Each original data record results in three rows in the
new table. This is known as a Repeating Group.

Region Target

USA 1385

EUROPE 794

ROW 286

USA 1245

EUROPE 2341

ROW 1860

etc. etc.

There are several permutations and variations of this simple model of array
handling:

�� Parallel OCCURS

This is where two or more data arrays occur in the data record, and the
corresponding elements in each array are treated as part of the same
repeating group.

�� Nested OCCURS

Transoft U/SQL User Guide

234

This is where two or more subscripts have to be indexed to access the
elements of, what is, a multi-dimensional array.

�� OCCURS depending on

This is where the number of elements in the data array can vary from
record to record depending on the value stored in a controlling field.

There are certain record layouts that can look difficult to model; for example it is
possible to imagine a combination of data arrays where the elements correspond
in an inverted way; the first element of one array corresponds to the last element
of another array. By making use of a temporary table in the UDD, it is usually
possible to model complex layouts.

The following sections describe the various types of array in more detail:

�� Flattened Array

�� Repeating Groups.

Configure and Use

235

Flattened Array

This is where OCCURS are flattened out into individual unique fields.

Consider the following example of the ADDRESS that occurs three times:

01 DATA-RECORD.

03 CUST-ID PIC X(4).
03 CUST-NAME PIC X(15).
03 ADDRESS PIC X(30) OCCURS 3 TIMES.

For this type of data you would probably want to flatten the OCCURS fields into
three individual fields, one for each address line.

This can be done by considering the record as being:

01 CUSTOMER.
03 CUST-ID PIC X(4).
03 CUST-NAME PIC X(15).

03 ADDRESS.
05 LINE-1 PIC X(30).
05 LINE-2 PIC X(30).
05 LINE-3 PIC X(30).

Because the data storage of the original file description is identical to this revised
model, it is simply necessary to use the correct field offsets when setting up the
UFD textual file definition.

If this table was entered in a UDD, then the following query will produce the table
below:

select fldname, offset, len from <xxx_field> where tabname =
"CUSTOMER";

Note: The value of xxx in the <xxx_field> table is the name of the UDD internal

table that describes the layout of the data fields within the record, see below.

fldname offset len

CUST_ID 0 4

CUST_NAME 4 15

LINE_1 19 30

LINE_2 49 30

LINE_3 79 30

You can identify the internal table name represented by tabname from within
your UDD by either reference to the UFD text file used to create the UDD or by
the following query:

select tabname from uddtables where tabname like "%FIELD" and
tabname not like "GEN%";

The above example was based on a UDD that supported the COBOL_FIELD
internal table. Similar results are possible from other data source drivers (DSD).

Note: The U/FOS DSD uses slightly different syntax. The corresponding query is:

select fldname, picture, offset from ufos_field where tabname
= "CUSTOMER";

Transoft U/SQL User Guide

236

Repeating Groups

Consider the following example COBOL FD with the JOBS-DATA group occurring
four times:

01 JOBS-RECORD.

 03 JOBS-KEY.

 05 JOBS-NO PIC X(6).

 03 JOBS-NAME PIC X(15).

 03 JOBS-DESCN PIC X(20).

 03 JOBS-DATA OCCURS 4 TIMES.

 05 JOBS-ACCD PIC S9(10)V99.

 05 JOBS-PAID PIC S9(10)V99.

When the record is converted to form a relational table, the JOBS-DATA appears

as four rows with columns of JOBS-ACCD and JOBS-PAID. The other fields, JOBS-

NO, JOBS-NAME and JOBS-DESCN being repeated for each row.

First consider this record mapped into a flattened array:

fldname offset len

JOBS_NO 0 6

JOBS_NAME 6 15

JOBS_DESCN 21 20

ACCD_1 41 12

PAID_1 53 12

ACCD_2 65 12

PAID_2 77 12

ACCD_3 89 12

PAID_3 101 12

ACCD_4 113 12

PAID_4 125 12

Now consider a temporary UDD table:

create temp table JOBS (NO char(6), NAME char(15), DESCN char(20),
ACCD decimal(12,2), PAID decimal(12,2));

Note: For the creation and use of temporary tables in the UDD, refer to the
section Create Tables in UDD.

Now populate this temporary UDD table using the following commands:

Configure and Use

237

insert into JOBS
select jobs_no, jobs_name, jobs_descn, accd_1, paid_1 from
jobs_record;

insert into JOBS
select jobs_no, jobs_name, jobs_descn, accd_2, paid_2 from
jobs_record;

insert into JOBS
select jobs_no, jobs_name, jobs_descn, accd_3, paid_3 from
jobs_record;

insert into JOBS
select jobs_no, jobs_name, jobs_descn, accd_4, paid_4 from
jobs_record;

If you then query this temporary UDD table:

select * from jobs;

you will see it contains the columns in the Repeating Group form.

Note: You may want to add an extra column into the table to indicate the
element being used. For example, say the first element is 'North' in your
application:

create temp table JOBS (NO char(6), ID char(6),..... etc.;

insert into JOBS select jobs_no, "North", jobs_name etc.;

Whilst this method is a very powerful way of processing some very difficult data
layouts it is not possible to update the data in the original file system as the final
query is made against the temporary extract. A more elegant solution is available
with the versions of U/SQL that support COBOL data structures.

This is achieved by making use of two array mapping system tables in the UDD.
You can check that these tables are available in your Data Source Driver (DSD)
by using the command:

select tabname from uddtables where tabname like "%ARRAY%";

If support is available in your DSD, then there should be two rows returned, one
for the object system table and one for the level system table.

The following five step process is the recommended way of setting up the
parameters for mapping a Repeating Group table:

Step 1

Note: Refer to the sections Manually Create a COBOL UDD and Creating a UDD
for details on creating UFD textual representations of your data.

The recommended first step is to map the required fields in the data record to
columns in the table as though the data held in the array was not required.
Remember that this requires the offset to fields after the array to be computed
correctly; you cannot ignore the size of the array when computing the offset.

Where the UFD xxx-field table, for example, cobol_field, requires a sequence
number, that is the column name is called sequenceno, then make sure you
leave large enough gaps in the number sequence for inserting extra lines later.

It is worth checking that the UFD text file entries you have created will build into
a valid and working UDD before proceeding to the next step.

To achieve this refer to the sections Creating the UDD from the UFD Text File and
Manually Creating a COBOL UDD.

Transoft U/SQL User Guide

238

Step 2

The next step is to add extra entries into the UFD xxx-field table to map the
field(s) in the first element of the array into the appropriate position in the table.
Remember that you have changed the number of entries in the xxx_field table
and you need to adjust the counter in the associated xxx_table entry.

Note: As in step 1, it is recommended that you check the UFD text file entries
you have created will build into a valid and working UDD before proceeding to the
next step.

Step 3

The basis of the Repeating Group array processing method is to define an
internal field that can act as a subscript. When this type of array processing is
operational, the Data Source Driver reads a record from the file and then the
record is broken down into 'n' rows by indexing this subscript field to traverse the
array(s).

Where the xxx_field table supports a sequence number, the entry should be
inserted in the table immediately before the first array entry, from Step 2, using
an appropriate sequence number to retain the ascending sequence. Where the
concept of a subscript 'object' is used by the Data Source Driver, for example, for
U/FOS, the entry should be immediately after the other entries, usually the Data
objects, to ease maintenance by keeping associated records together.

This subscript field is defined in the xxx_field table as follows:

cobol_field ufos_field New entry required

------ objname Cross reference name, say SUB, to entry in
ufos_object of objtype = 'SUBSCRIPT'.

------ fldno Identify field within object (1 in this case as this
is first and only subscript).

tabname ------ Table name.

fldname fldname An unique identifier (say IDX).

cobolname ------ Not used.

flddesc ------ Not used.

sequenceno ------ A sequence number of the entry in the table.

type ------ Set = 3 (Numeric).

usage ------ Set = 10 (Display).

------- fusage Set = "DISPLAY".

signed ------ Set = 34 (Unsigned).

len ------ Set = 4.

offset offset Set = 0.

ndec ------ Set = 0.

Configure and Use

239

picture picture Set = "9(4)".

levelno ------ Set to level of array in structure.

numdigits ------ Set same as 'len' column, that is, 4.

dateformat ------ Not used.

fieldflags ------ Set to 9 (bit 1 = 'data' and bit 4 = 'subscript'
flags).

arraylevname ------ A unique identifier.

arraylevel ------ 'Depth' of array (1 in this case).

nullvalue ------ Not used.

colassignexpr ------ Not used.

scaling ------ Not used.

 ufos_object New entry required

 objname Set same as objname in ufos_field.

 numfield Set = max[fldno] (1 in this case).

 objtype Set = "SUBSCRIPT".

You can re-check that the UFD file creates a valid UDD at this stage, however
there are some simple changes that are worth making to other tables:

cobol_field ufos_field Changes to existing entry

tabname tabname The existing name of the table.

arrays ------ Set to 1 as array processing is required.

------ nobj Increase by 1 for additional entry in
'ufos_tab_object'.

recexpr cond Used later if necessary to limit rows returned.

 ufos_tab_object New entry required

 tabname The name of the table.

 objno Current highest object number for this
tabname + 1.

 object The name of the "SUBSCRIPT" object (same as
objname in ufos_field)

Set = "SUB" in this example.

Transoft U/SQL User Guide

240

Note: As in step 1, it is recommended that you check the UFD text file entries
you have created will build into a valid and working UDD before proceeding to the
next step.

Notice that the extra column, IDX in this example, is visible alongside the other
columns in the table, although the contents are, at this stage, incorrect

Step 4

In order to get the subscript field to cycle through the required range of 1 to 'n',
it is necessary to add an entry into each of the array system tables.

The contents of these tables are listed below:

array_object ufos_array_object New entry required

------ name An unique name used to identify the array.
Same as the 'objname' in the 'array_level'
table.

For example, "ARRY".

objid ------ An unique number,in this table, to cross-
reference to 'objid' in the 'array_level'
table.

max_levelno nlevel The maximum number of subscripts
needed to address the array elements (set
= 1 in this example).

objseq ------ Sequence number of entries in this table.

array_level ufos_array_level New entry required

tabname tabname Must match the table 'name' used above.

levname objname An unique 'name' used to identify the
array.

say (for example) = "ARRY".

objid ------ Cross-reference to 'objid' in 'array_object'
table.

levelno levelno The 'level' of the subscript to 'cycle' - in
this case we only have one, so set = 1.

start_offset start_offset The offset of the first byte of the first
element of the array.

element_size element_size The size, in bytes, of one element (which
may be several fields) of the array.

max_elements max_elements The maximum number of elements (this is
the maximum value of the subscript).

min_elements ------ The lowest element (usually = 1).

depending_on ------ * usually set to underscore "_" .

Configure and Use

241

parallel_to ------ * usually set to underscore "_".

subscript ------ Set to the 'fldname' in 'cobol_field' of the
subscript field. In this example = "IDX".

type ------ Set to 0 (zero).

is_displayed ------ Set to 1.

The entries above identified with * are described in detail later in this section.

Note: As in step 1, it is recommended that you check the UFD text file entries
you have created will build into a valid and working UDD before proceeding to the
next step.

The subscript, IDX in this example, now cycles through the range 1 to n, and the
number of rows returned is increased by the factor of 'n'.

Step 5

The final stage is to 'tidy up' the data retrieved from the array.

If you are using the cobol_field model, it is necessary to amend the entries in
the cobol_field table for the field(s) that make up the array element as follows:

Bit 5 of the fieldflags column must be set. This is equivalent to adding 16 to the
existing value.

Enter the 'levname' used in the controlling 'array_level' table in the
arraylevname column; ARRY in this example.

Enter the 'levelno' used for the appropriate subscript in the controlling
'array_level' table in the arraylevel column; 1 in this example.

It may be necessary to consider ignoring some of the data. For example if not all
the elements of the array contain data then they should not become a row in the
repeating group table as a

select count(*) from <table>;

will include these rows in the count. This is achieved by inserting a suitable
expression in the recexpr or cond column (the name of this column depends on
your DSD) of the xxx_table entry, from step 3 above, to filter out any unwanted
rows.

The entries for the repeating group table are now complete.

Note: As in step 1, it is recommended that you check the UFD text file entries
you have created will build into a valid and working UDD before including these
entries into a 'production' UDD.

Transoft U/SQL User Guide

242

Special Considerations

Parallel OCCURS

This special case exists when there are two or more data arrays in a record and
the elements of each array correspond, that is the second element of array 1
corresponds to second element of array 2 and so on.

Note: Where there are several arrays in the record and these contain differing
numbers of elements, then the record must be mapped onto more than one table,
which can then be joined by the SQL query when necessary.

The only Data Source Drivers that enable support for parallel occurs to be
mapped onto a single table are those that have a parallel_to column in the
array_level table, see step 4.

The process of setting up the UFD text file is exactly the same as described in
steps 1 to 5 of the Repeating Groups section, except that a separate entry is
required in the array_object table for each array that is participating in the data
table.

The differences between the entries are highlighted below.

array_object New entry required

objid An unique number, in this table, to cross-reference to 'objid'
in the 'array_level' table.

max_levelno The maximum number of subscripts needed to address the
array elements (set = 1 in this example).

objseq Sequence number of entries in this table.

array_level New entry required

tabname Must match the 'table name' used above.

Levname An unique 'name' used to identify the array.

For example, say, "ARRAY2".

objid Cross-reference to 'objid' in 'array_object'. Set to number of
previous objid + 1 for second array.

levelno The 'level' of the subscript to 'cycle' - in this case we only
have one, so set to '1'.

start_offset The offset of the first byte of the first element of the required
array.

element_size The size, in bytes, of one element of the array, which may be
several fields.

max_elements The maximum number of elements (this is the maximum
value of the subscript).

min_elements The lowest element (usually = 1).

depending_on * usually set to underscore "_".

Configure and Use

243

parallel_to Set to the "levname" of the first array (= "ARRY" for
example).

subscript Set to the 'fldname' in 'cobol_field' of the subscript field (In
this example = "IDX").

type Set to 0 (zero).

is_displayed Set to 1.

This mechanism enables entries in two or more arrays to be processed as a
parallel OCCURS type of repeating group mapping.

Nested OCCURS

This special case exists when the data array requires two or more subscripts to
address the element concerned, that is it is a multi-dimension array.

Consider the following example:

01 SALEHIST.

 03 STKNUM PIC X(6).

 03 NO-OF-ITEMS PIC 999.

 03 STK-DATA OCCURS 2.

 05 CUSTCODE OCCURS 5.

 05 YEAR PIC 99.

 05 SALES PIC 9(5)V99.

 03 TOTAL-SALES PIC 9(5)V99.

The process of setting up the UFD text file is exactly the same as described in
steps 1 to 5, above, except that two subscript entries are required in the xxx-
field table, say, IDX1 and IDX2, and a separate entry is required in the
array_level table for each array subscript needed to address the fields of the
elements participating in the data table.

The following table shows the additional entries required to define the two
subscript entries needed.

cobol_field ufos_field Modified (2) entries required. (other fields as
in earlier example)

------ objname Cross reference name, say SUB, to entry in
'ufos_object' of 'objtype' = 'SUBSCRIPT'.

------ fldno Identify field within object (1 for first subscript 2
for second subscript).

tabname ------ Table name.

fldname fldname An unique identifier (use IDX1 & IDX2 for this

Transoft U/SQL User Guide

244

example).

arraylevname ------ An unique identifier (say ARRO & ARRI for outer
and inner array).

arraylevel ------ 'Depth' of array (1 for outer array, 2 for inner
array entry).

 ufos_object Modified single entry

 objname Set same as 'objname' in 'ufos_field'.

 numfield Set = max[fldno] (2 in this case).

 objtype Set = "SUBSCRIPT".

It is also necessary to add additional data to both array tables to process the
additional subscript level that is necessary.

array_object ufos_array_object Modified entry required

------ name An unique 'name' used to identify the
array. Same as the 'objname' in the
'array_level' table.

For example, say = "ARRY".

objid ------ An unique number, in this table, to cross-
reference to 'objid' in the 'array_level'
table.

max_levelno nlevel The maximum number of subscripts
needed to address the array elements (set
= 2 in this example).

objseq ------ Sequence number of entries in this table.

array_level ufos_array_level Two entries required

tabname tabname Must match the 'table name' used above.

levname objname An unique 'name' used to identify the
array.

For example, say, = "ARRY".

objid ------ Cross-reference to 'objid' in 'array_object'.

levelno levelno The 'level' of the subscript to 'cycle' - in
this case we have two entries, so set first
entry to '1' second entry to '2'.

start_offset start_offset The offset of the first byte of the first
element of the array.

element_size element_size The size (in bytes) of the element of the
array addressed. Note, the level 1 entry
addresses an element of 45, the level 2
entry an element of size 9 (in example).

Configure and Use

245

max_elements max_elements The maximum number of elements (this is
the maximum value of each subscript - 2
for level 1 entry 5 for level 2 entry).

min_elements ------ The lowest element (usually = 1).

depending_on ------ * usually set to underscore "_".

parallel_to ------ * usually set to underscore "_".

subscript ------ Set to the "fldname" in 'cobol_field' of the
subscript field (In this example say level 1
entry = "IDX1" and level 2 entry =
"IDX2").

type ------ Set to 0 (zero).

is_displayed ------ Set to 1.

This mechanism enables entries in a two or more dimensional array to be
processed as a nested OCCURS type of repeating group mapping.

OCCURS Depending on

This special case exists when the number of elements in the data array is
dependent on another field in the record.

Consider the following example:

01 SALEHIST.

 03 STKNUM PIC X(6).

 03 NO-OF-ITEMS PIC 999.

 03 STK-DATA OCCURS 0 TO 100
TIMES

 DEPENDING ON NO-OF-ITEMS.

 05 CUSTCODE PIC X(4).

 05 YEAR PIC 99.

 05 SALES PIC 9(5)V99.

 03 TOTAL-SALES PIC 9(5)V99.

Where the array_level table has a depending_on column, then this must be
set to the fldname of the controlling field; "NO-OF-ITEMS" in this example.

array_level Modified entry required

depending_on Set to value of fldname entry in cobol_field table that controls
this array.

Transoft U/SQL User Guide

246

Where this feature is not available, an entry in the recexpr or cond column of
the xxx_table will filter out the unwanted rows.

cobol_table ufos_table Change to existing entry

recexpr cond In this example, if subscript = "IDX", then idx <=
no_of_items will filter the unwanted rows.

This mechanism enables entries in an array holding variable numbers of elements
to be processed as a depending on type of repeating group mapping.

Note: To handle data arrays efficiently, it may be necessary to consider the best
way of mapping the data array onto a 'relational' style table. It is generally best
to experiment in a test environment before modifying the production version of
the UDD.

Configure and Use

247

Limitations

�� The syntax for UNION ALL is supported. However, if the tables hold different
numbers of columns an error is generated. If the formats are different they
are converted to a common format, usually CHAR type.

�� Rev 3.10 and all previous versions of U/SQL, use floating point arithmetic for
internal computation of integer values. This may result in rounding errors of
the least significant digit, which is evident when the number is displayed with
16 or more significant digits.

�� When using the Character Translation table, it is not possible to use scalar
functions within a record expression as there is a conflict between the needs
of foreign character translation and the ODBC syntax for scalar functions,
which prevent them being stored in a database.

�� 'Grant and Revoke' is a sub-set of the ANSI standard Grant/Revoke security
system, providing that the dba user is the only user with GRANT permission,
and may not pass such permission to another user.

�� 'Select for update' has been implemented with a mechanism that locks one
row at a time and not the entire 'cursor'. This is only effective when using an
update or delete 'where current of <cursorname>'.".

Note: This does not apply if the TrueSFU directive has been set.

�� When importing or exporting tables using Win U/SQLi, the layout of data can
sometimes leave the text with line lengths that are longer than that
supported by standard editors.

�� The U/SQL Manager does not support ACUCOBOL XFD directives.

�� Dates and times are validated when converted to/from physical storage. This
ensures that invalid data cannot be stored, nor can it be retrieved without
error (these data items are normally a sign of an invalid database definition
in the UDD). If this is not desired, that is, invalid dates are desired, then set
the directive AllowInvalidDates=Y for that data source.

�� There is a limit of 250 DSNs within a single usqlsd.ini file or within a single
service on Windows NT. To exceed this limit use the MaxDSN directive.

�� U/SQL 3.20 does only allows you to access U/FOS datasources if you are
using U/FOS NT 2.4.2042 and above. If you attempt to access a U/FOS
datasource using USQL 3.20 against an older version of U/FOS NT (for
example, 2.4.1017 / 2039), the following error is generated:

Procedure entry point db_term could not be located in the dynamic
link library libkernel.dll

Transoft U/SQL User Guide

248

Specific UDD Information

Configure and Use

249

Setting Up a COBOL Data Dictionary

Planning to Use U/SQL Manager

Note: Refer to the Overview and Creating a UDD sections for an overview of the
dictionary technology and the steps involved in creating a UDD.

For ACUCOBOL Vision and Micro Focus EXTFH files, creating the UDD has been
made as easy as possible. The U/SQL Manager helps you build the dictionary
using the information declared by your COBOL FDs, SELECT statements and
appropriate copyfiles.

Note: The U/SQL Manager is only available as a 32-bit client product.

This section:

�� Summarizes the steps required to set up a dictionary using the U/SQL
Manager.

�� Describes what you need to do before you start by providing an overview of
the way COBOL data is represented, and the decisions you may have to make
when planning your COBOL data dictionary.

�� Describes expression handling and its syntax. For example, to differentiate
between multiple record types within the same physical file, as separate
logical tables, you are able to specify an expression that uniquely
distinguishes each record type from the others.

U/SQL Manager Revision Control

The U/SQL Manager checks both the U/SQL Server engine (Single or Multiple-tier)
and dictionary it is connected to. It will not allow connections to engines it deems
are not compatible, and will warn, but still allow a connection to a UDD that it
deems to be incompatible.

To obtain the minimum versions of both the engine and the dictionary expected
by the U/SQL Manager display its About box (located in the Help menu).

Summary of the Steps to Set Up a Dictionary

1. Read the documentation, in particular the section Representing COBOL
Data below, and plan what you intend to achieve.

2. Copy, into a suitable directory on your PC, one or more COBOL programs
or copyfiles containing the appropriate COBOL FDs and SELECT
statements.

3. Start the U/SQL Server on your host system (Multiple-tier only).

4. Start the U/SQL Manager on your PC.

5. Either create a new data dictionary (or open an existing one if you want to
modify or add to it).

6. Select the first COBOL program or copyfile you wish to use and the COBOL
FD Converter will parse it to obtain the record names.

7. If necessary, rename the records (tables) to something more suitable.

8. Select the first record (table) to be further parsed for File, Data and index
Key information.

Transoft U/SQL User Guide

250

9. Manipulate the Data:

�� If necessary, modify the field (column) names to be compliant with SQL
syntax. Specify with dates and NULL fields.

�� Expressions can be added to columns or virtual columns to change their
values.

�� Include or exclude REDEFINES, and, if required, exclude other fields.

�� If you have multiple 01 records, multiple logical tables will be created
for the same file. Remember you need to supply an expression that
distinguishes each different record type.

�� Consider OCCURS statements and the possible combinations of creating
individual fields, repeating groups, parallel OCCURS, nested OCCURS
and OCCURS DEPENDING ON.

10. Check that all the index Key information has been created successfully
from the SELECT statements, if they are available. Otherwise, you must
enter all the index key information manually.

11. Each logical table has to be given its physical file name. Check that the
organization of the file, for instance, INDEXED, is correct.

If there is more than one logical table for the same physical file, then you
need to enter the expression that differentiates the record type of each
logical table.

12. When satisfied, use the U/SQL Manager to write the information to the
dictionary. Note that the process of loading your data into the dictionary
automatically creates the logical or table views that will be visible to the
ODBC-enabled products.

13. If you do not have a COBOL FD, you can enter the data, index and file
information manually.

14. Repeat the above procedure for all your application's records and files until
the UDD is complete.

The remainder of this section discusses in more detail how your COBOL data may
be represented and the decisions you may have to make when planning your
COBOL data dictionary.

Refer to the sections Using U/SQL Manager to Create a UDD and Modifying a
UDD.

Configure and Use

251

Representing COBOL Data

Representing COBOL Data

The following sections provide an overview of the way COBOL data is
represented, and the decisions you may have to make when planning your
COBOL data dictionary.

�� File Access Methods Supported

�� Dealing with Multiple 01 Level Records

�� Expression Handling Syntax

�� Field (Column) Names

�� Dates

�� Defining NULL Columns (Fields)

�� Expressions on Columns and Virtual Columns

�� REDEFINES

�� OCCURS.

It is assumed that you are familiar with at least the following:

�� The COBOL file organization types (indexed, relative and so on) used in your
data files.

�� The compiler and storage options used to create your data files. A number of
things can be affected by these settings so it is important that the correct
ones are known and understood. For example, the record length can be
adjusted dependent on the settings.

�� How REDEFINES have been used in your data and, if separate logical tables
apply to each re-definition, what value or expression signifies the record type
for each redefine.

�� For multiple 01 level record types, what they mean in your application and
what value or expression signifies each record type.

�� If variable length records are used you should be aware of the meaning and
impact of NULL of columns in the variable portion of the record. These
records are restricted to read only.

�� Ensure record FDs contain all their fields including any embedded or trailing
FILLER. If they do not then incorrect record lengths may be calculated.

�� The SELECT statements containing the index key components of your data.
If your COBOL FDs qualify data names in the specification of any index, then
the U/SQL Manager may not correctly identify these key field.

It is extremely important to check that the entries for each index contain all
the key components in the correct order. Failure to do so will result in
performance degradation as the index will not be used in certain cases, when
it should be, or even in U/SQL not being able to perform the query at all.

Check the contents of your indexes using the appropriate COBOL utility:

�� ACUCOBOL - utility vutil

�� Micro Focus COBOL - utility fhinfo.

Refer to your COBOL documentation for further details.

Transoft U/SQL User Guide

252

�� Your application's data to ensure that you are obtaining the correct results
once you have built your UDD and started to use U/SQL with an ODBC-
enabled product.

Configure and Use

253

File Access Methods Supported

For each file, you will have to consider its access method, what indexes it has and
how it will be used. U/SQL automatically recognizes and supports the following
file types:

�� Indexed (fixed and variable record length)

�� Relative (fixed and variable record length)

�� Sequential (fixed and variable record length)

�� Line Sequential (terminated by either newline or carriage return/newline,
dependent on operating system).

Transoft U/SQL User Guide

254

Dealing with Multiple 01 Level Records

If there are multiple 01 records defined for the same physical data file, each
record type is described as a separate logical table. You will need to know how
each record type can be distinguished from the others. This is usually determined
by one or more fields having particular values. You must decide on the name you
wish to use for each logical table and establish the differentiating values or
expressions. This is known as a record expression.

When you subsequently access each logical table via an ODBC-enabled product,
the U/SQL Server will automatically use the differentiating values or expressions
to return only the appropriate records from the physical file.

Note: If you have multiple records or structures, in the same physical file, you
must define each one as a separate logical table.

The following example FD of an employee file (EMPL) has two 01 records - the
Employee Master Record and the Employee Salary Record.

FD EMPL.

* Employee Master Record
01 MAS-EMPREC.

 03 MAS-EMP-KEY.
 05 MAS-COMPANY PIC 9(2).
 05 MAS-NUMBER PIC 9(5).

 05 MAS-REC-TYPE PIC X.
* MASTER RECORD IS RECORD TYPE = "M"
 03 MAS-ALT-KEY.
 05 MAS-LASTNAME PIC X(20).

 03 MAS-INITIALS PIC X(4).
 03 MAS-SSNUMBER PIC X(15).
 03 MAS-ADDRESS.

 05 MAS-ADDRESS1 PIC X(15).
 05 MAS-ADDRESS2 PIC X(15).
 05 MAS-ADDRESS3 PIC X(15).
 05 MAS-ZIP-CODE PIC 9(5).

 03 MAS-PHONE PIC X(13).
 03 MAS-FROM-DTE PIC 9(6).

* Employee Salary Record
01 SAL-SALREC.
 03 SAL-SAL-KEY.

 05 SAL-COMPANY PIC 9(2).
 05 SAL-NUMBER PIC 9(5).
 05 SAL-REC-TYPE PIC X.
* SALARY RECORD HAS RECORD TYPE = "S"

 03 SAL-ALT-KEY.
 05 SAL-GRADE PIC X(20).
 03 SAL-TITLE PIC X(10).

 03 SAL-SALARY PIC S9(5)V9(2)
 TRAILING SEPARATE.
 03 SAL-I-AMT PIC S9(5)V9(2)
 TRAILING SEPARATE

 OCCURS 3 TIMES.
 03 SAL-I-DTE PIC 9(6) OCCURS 3 TIMES.

The U/SQL Manager's COBOL FD Converter will parse this FD and create two
logical tables, one called MAS_EMPREC and the other SAL_SALREC. You can
rename them to, say, Emp_Master and Emp_Salary.

Configure and Use

255

The two record types are distinguished by the REC_TYPE field being "M" or "S"
respectively. Thus for the MAS_EMPREC table you will insert the record
expression:

MAS_REC_TYPE="M"

and for the SAL_SALREC table the record expression will be:

SAL_REC_TYPE="S".

Notes:

1. The field separator character '-' is illegal in SQL syntax. All '-' characters
are automatically converted to '_' by the U/SQL Manager's COBOL FD
Converter.

2. The names of any fields in the Expression are NOT case-sensitive.

3. See the Expression Handling Syntax section.

4. The record expression may not include items which are parts of repeating
groups.

Transoft U/SQL User Guide

256

Expression Handling Syntax

As described in the Dealing with Multiple 01 Level Records section, multiple 01
level records can be denoted as separate logical tables distinguished by including
a differentiating value or expression with each record definition in the UDD.

U/SQL includes an expression handler that conforms to the X/Open SQL syntax
for the WHERE clause search-condition that qualifies the selection of query rows.

Search conditions are one or more predicates, combined with the logical
operators AND, OR and NOT.

The names of columns (fields) in expressions are not case-sensitive.

Note: Scalar functions and sub-queries within the search-condition are not
supported.

The following sections provide the search-condition syntax.

Logical Operators

The order of precedence among the logical operators is NOT, followed by AND,
followed by OR. The order of evaluation at the same precedence level is from left
to right. Parentheses can be used to change this order.

Comparison Predicate

A comparison predicate compares two values and has the form:

expression_1 comparison_operator expression_2

where comparison_operator can be any of the following:

= equal to

<> not equal to

> greater than

>= greater than or equal to

< less than

<= less than or equal to

The result is true or false, depending on the outcome of the comparison.

BETWEEN Predicate

A BETWEEN predicate tests whether a value is within a range of values and has
the form:

expression_1 [NOT] BETWEEN expression_2 AND expression_3

The predicate (without NOT) is equivalent to:

expression_1 >= expression_2 AND expression_1 <= expression_3

Configure and Use

257

Using the keyword NOT negates the result in the manner of the NOT logical
operator.

LIKE Predicate

A LIKE predicate compares a column value with a pattern and has the form:

 [NOT] LIKE pattern_value

The column column_name must reference a character string column, and

pattern_value is a character string literal.

The result of the predicate is true or false depending on whether or not the value
of the column referenced by column_name conforms to the specified pattern.

Using the keyword NOT negates the result in the manner of the NOT logical
operator.

Pattern Syntax

Within the character string literal represented by pattern_value in the above

example, characters are interpreted as follows:

�� The underscore character '_' stands for any single character.

�� The percent character '%' stands for any sequence of zero or more
characters.

�� All other characters stand for themselves.

For example:

�� LIKE '%X%' is true for any column value that contains the character X.

�� LIKE 'Y_' is true for any column that is two characters wide and starts

with the character Y.

Note: The character string literal can be bounded by either single quotes (') or
double quotes (").

Transoft U/SQL User Guide

258

Field (Column) Names

Field (column) names must be unique within a table, normally up to 18
characters conforming to SQL naming standards, but can optionally be a
maximum of 30 characters. The U/SQL Manager's COBOL FD Converter checks
that all field names do comply and notifies you if any do not. Compliant field
names can be generated automatically, if required.

Configure and Use

259

Dates

U/SQL is capable of manipulating a broad range of physical date formats which it
maps to the ODBC SQL Date data type (CCYYMMDD) that then allows date
formatting and sorting by ODBC-enabled products.

You need to know which fields are to be declared as dates and whether they are
defined as a format string, say, DD/MM/YY, or as a Julian date, in which case you
will need to know the base or epoch date, for instance, 01/01/1980.

Transoft U/SQL User Guide

260

Defining NULL Columns (Fields)

It is often useful if a particular value in a column (field) can be considered the
SQL NULL value.

NULL values are determined by a boolean expression in the form of a
search_condition placed on any column which, if true, indicates that the column
is NULL. The search_condition is defined in the Expression Handling Syntax
section.

You define the NULL value using any of the following formats:

�� "X" - where X is a printable ASCII character.

�� xHH - where HH is a hexadecimal representation of an ASCII character.

�� DDD - where DDD is a decimal representation of an ASCII character.

If the outgoing data is to be represented in EBCDIC, it is converted from ASCII to
EBCDIC after NULL value conversion takes place.

For example, in an Employee table (record) there is a column (field) LEFT_DATE
which, if non-zero, indicates the date on which an employee left the company.
This column could have the NULL boolean expression as:

0 : zero

to indicate a NULL date.

The following SQL query could then be used to select all past employees:

select * from employee where left_date is not null;

Note: U/SQL implies NULL in certain situations, for example, if the sign 'nibble'
(half byte) of a COMP-3 is invalid.

Configure and Use

261

Expressions on Columns and Virtual Columns

An expression can be placed on any column (field) to change its value, depending
on the value of other columns in the same row (record).

The column expression has three forms:

1. IF search_condition THEN assignment_expression [ELSE
assignment_expression]

2. assignment_expression

3. $special_assignment_expression

where search_condition and assignment_expression are defined in the

Expression Handling Syntax section.

The expression forms applicable to columns and virtual columns are summarized
in the following table:

Column Virtual Column

Expression form 2.

Note: Such a column cannot be
updated.

Expression forms 1 and 2

Expression form 3.

Note: Such a column can be
updated.

Note: Virtual columns cannot be
updated. Update the real columns

only.

Note: Column expression and Date format are mutually exclusive in any column
definition.

assignment_expression can be any of the following:

�� a column name, for example, AMOUNT

�� a string literal or numeric constant, for example, "Y" or 10

�� an arbitrary arithmetic expression, for example:

((FLAG2-3)/6)-(AMOUNT *10)+FLAG2

For example, assume a data record has the column BALANCE which always holds
the amount as a positive value. A further column CREDIT is set to "Y" if the
BALANCE amount is negative. For an ODBC-enabled product to be able to easily
provide the summation of the amounts, taking account of whether they are debit
or credit values, from a number of rows (records), the value in BALANCE needs to
be modified.

This is achieved by placing an expression on the column BALANCE to modify its
value, after it has been read, to be negative if the column CREDIT is set to "Y".
The column expression could be either:

IF CREDIT="Y" THEN -BALANCE

or

IF CREDIT<>'Y' THEN BALANCE ELSE -BALANCE

$special_assignment_expression

Transoft U/SQL User Guide

262

The internal UFD table, cobol_field, of the COBOL data source driver has had the
column colassignexpr enhanced. Refer to section Step 2: Define Fields
(Columns) in Chapter 5, Manually Create a COBOL UDD.

The use of this field has been extended to allow syntax $nnnn where:

�� '$' has been introduced as a special directive to indicate the current field
addressed by the entry, and

�� 'nnnn' is an expression that resolves to a numeric constant.

For example, suppose the field is a record_type and is stored with values 18, 19
and 20 but the end user knows these as 1, 2 and 3 (say), then the 'perceived'
value of the column must be adjusted by subtracting 17.

This is achieved by setting the value in column expression (colassignexpr) to
$17.

Note: The value 17 is positive - it is the value that manipulates the 'perceived'
value to make the 'stored' value, not the other way around. An expression of $-
17 would manipulate the column to be perceived to contain 35, 36 and 37 in this
example.

This value takes effect before any filter applied to the record expression
(recexpr) column of the cobol_table in the internal UFD.

Given the correct value, the process is reversible - the value is subtracted on a
SELECT and added on an INSERT or UPDATE.

There are limitations:

�� The fields must be numeric in nature - they cannot be alpha-numeric.

�� The field cannot be redefined and displayed as part of a group field. To do so,
the raw value is processed.

Note: Scalar functions cannot be used in the columns record expression
(recexpr) or column expression (colassignexpr).

Virtual Column

A virtual column can be defined in any table, where the value is determined
solely from a column expression. A new column can only be added to the table
after the original record's FD details have been entered into the dictionary. In the
example above, a new virtual column, say, REAL_VALUE, would then need to
have the column expression:

IF CREDIT<>'Y' THEN BALANCE ELSE -BALANCE

Configure and Use

263

REDEFINES

For COBOL REDEFINES, the dictionary is able to hold both the field or its re-
definitions. This means that you are able to access the main field or the
components from ODBC-enabled products. In the following example, you would
be able to access all three field items, CODE-FIELD, NAME_PART and NUMBER.

03 CODE-FIELD PIC X(16).
03 CODE-PARTS REDEFINES CODE-FIELD.

 05 NAME_PART PIC X(10).
 05 NUMBER PIC 9(10) COMP-3.

Very often REDEFINES are used to specify separate logical tables for each re-
definition. You therefore need to apply a record expression to each table to
identify the appropriate structure. This is similar to having multiple 01 level
record types, see the Dealing with Multiple 01 Level Records section.

Note: When inserting data into a record with overlapping data, define only one
set of overlapping fields - otherwise any difference between the two
representations of the data will cause undefined results.

Transoft U/SQL User Guide

264

OCCURS

Note: A detailed discussion on OCCURS is provided in the Handling Data Arrays
section.

U/SQL can handle COBOL OCCURS in several different ways:

�� OCCURS can be flattened out into individual unique fields

or maintained as any combination of the following:

�� Repeating groups

�� Parallel OCCURS

�� Nested OCCURS

�� OCCURS DEPENDING ON (and, optionally, for Micro Focus, ODOSLIDE).

OCCURS Flattened Out into Individual Unique Fields

Consider the following example of an ADDRESS that OCCURS three times:

03 ADDRESS PIC X(30)
 OCCURS 3 TIMES.

For this type of OCCURS you want to flatten it out into individual fields, one for
each address line. This can be automatically actioned by the U/SQL Manager's
COBOL FD Converter to give the equivalent relational table:

ADDRESS1 char(30)
ADDRESS2 char(30)

ADDRESS3 char(30)

Repeating Groups

Consider the following example FD with the JOBS-GROUP occurring 12 times:

01 JOBS-RECORD.

 03 JOBS-KEY.
 05 JOBS-NO PIC X(6).
 03 JOBS-NAME PIC X(30).
 03 JOBS-DESCRIPTION PIC X(50).

 03 JOBS-GROUP OCCURS 12 TIMES.
 05 JOBS-ACCD PIC S9(10)V9(2).
 05 JOBS-PAID PIC S9(10)V9(2).

In a normalized table, JOBS-GROUP appears as 12 separate rows. So, for each
JOBS-RECORD there are 12 rows with the same values for JOBS_NO, JOBS_NAME
and JOBS_DESCRIPTION repeated in each of the 12 rows:

Row JOBS-

NO

JOBS-

NAME

JOBS-

DESCRIPTION

JOBS-

ACCD

JOBS-

PAID

1 123456 Anyjob Anyjob
description

99.99 1.2

2 123456 Anyjob Anyjob
description

88.88 2.30

Configure and Use

265

3 123456 Anyjob Anyjob
description

77.77 3.40

4 123456 Anyjob Anyjob
description

66.66 4.50

5 123456 Anyjob Anyjob
description

55.55 5.60

6 123456 Anyjob Anyjob
description

44.44 6.70

7 123456 Anyjob Anyjob
description

33.33 7.80

8 123456 Anyjob Anyjob
description

22.22 8.90

9 123456 Anyjob Anyjob
description

11.11 9.10

10 123456 Anyjob Anyjob
description

12.34 10.11

11 123456 Anyjob Anyjob
description

56.78 11.12

12 123456 Anyjob Anyjob
description

91.01 12.13

When the U/SQL Manager's COBOL FD Converter parses an FD, it automatically
assumes that the OCCURS is to be treated as a repeating group and inserts a
table column and a subscript column. The table column is given the name of the
OCCURS and a suffix of _TBL (for example, JOBS_GROUP_TBL). The subscript
column is given the name of the OCCURS and a suffix of _IDX (for example,
JOBS_GROUP_IDX).

This subscript field is effectively a key to the repeating group. In the
JOBS_GROUP example, JOBS_GROUP_IDX has a value of 1 through 12,
identifying each of the repeating rows.

For this example, the equivalent relational table (JOBS_RECORD) is produced:

JOBS_NO char(6)
JOBS_NAME char(30)
JOBS_DESCRIPTION char(50)

JOBS_GROUP_IDX integer
JOBS_ACCD numeric(12,2)
JOBS_PAID numeric(12,2)

An alternative to maintaining the OCCURS as a repeating group is to define a
separate logical table that contains just the key from the first table (needed to
join the tables) and the repeating group. For example, a CUSTOMER record may
contain many fields with an OCCURS at the end for the 12 months' actual and
budget information:

01 CUSTOMER.

 03 CUST-KEY.
 05 CUST-NUMBER PIC 9(5).
 03 CUST-INITIALS PIC X(4).

Transoft U/SQL User Guide

266

 03 CUST-ADDRESS.
 05 CUST-ADDRESS1 PIC X(15).

 05 CUST-ADDRESS2 PIC X(15).
 05 CUST-ADDRESS3 PIC X(15).
 05 CUST-ZIP-CODE PIC 9(5).
 03 CUST-PHONE PIC X(13).

.

.

.

 03 CUST-AMT-GROUP OCCURS 12 TIMES.
 05 CUST-ACTUAL-AMT PIC S9(5)V9(2).
 05 CUST-BUDGET-AMT PIC S9(5)V9(2).

You could declare this one record, CUSTOMER, as two logical tables, one called
CUST_MAIN for the name and address details, up to but not including the
OCCURS, and the other called CUST_BALANCES, containing the key and the
OCCURS only:

Relational table 1, CUST_MAIN, includes the following:

CUST_NUMBER integer
CUST_INITIALS char(4)

CUST_ADDRESS1 char(15)
CUST_ADDRESS2 char(15)
CUST_ADDRESS3 char(15)
CUST_ZIP_CODE integer

CUST_PHONE char(13)
.
.

.

Relational table 2, CUST_BALANCES, includes the key and OCCURS details:

CUST_NUMBER integer
CUST_AMT_GROUP_IDX integer

CUST_ACTUAL_AMT numeric(7,2)
CUST_BUDGET_AMT numeric(7,2)

These two tables can be joined by CUST_NUMBER.

Parallel OCCURS

It is possible to have more than one OCCURS defined as repeating groups within
the same logical table, known as parallel OCCURS, but they must all have the
same number of occurrences. The U/SQL Manager's COBOL FD Converter
automatically inserts a single subscript field, called INDEX1, before the first of the
repeating groups. You can change this name to one more meaningful to you.

01 JOBS-RECORD.
 03 JOBS-KEY.
 05 JOBS-NO PIC X(6).

 03 JOBS-GROUP.
 05 JOBS-ACCD PIC S9(10)V9(2)
 SIGN TRAILING SEPARATE.

 05 JOBS-ACM PIC S9(10)V9(2)
 SIGN TRAILING SEPARATE
 OCCURS 12 TIMES.
 05 JOBS-PAID PIC S9(10)V9(2)

 SIGN TRAILING SEPARATE.
 05 JOBS-PYM PIC S9(10)V9(2)
 SIGN TRAILING SEPARATE

Configure and Use

267

 OCCURS 12 TIMES.
 05 JOBS-BILL PIC S9(10)V9(2)

 SIGN TRAILING SEPARATE.
 05 JOBS-BLM PIC S9(10)V9(2)
 SIGN TRAILING SEPARATE
 OCCURS 12 TIMES.

For example, the JOBS-RECORD, above, has three repeating groups each of 12
occurrences. The subscript field appears before JOBS-ACM and is automatically
created as INDEX1.

This subscript field is effectively an extra index key which, in this case, has a
value of 1 through 12 for each occurrence row for each JOBS-RECORD.

For this example, the equivalent relational table (JOBS_RECORD) is produced:

JOBS_NO char(6)
JOBS_ACCD numeric(12,2)
INDEX1 integer
JOBS_ACM numeric(12,2)

JOBS_PAID numeric(12,2)
JOBS_PYM numeric(12,2)
JOBS_BILL numeric(12,2)

JOBS_BLM numeric(12,2)

You can 'mix & match' the differing types of OCCURS. In this example, each
OCCURS could be a separate logical table. Alternatively, one or more of them
could be flattened into individual unique fields within the same overall table, or
there could be a combination of the two.

Nested OCCURS

COBOL allows multiple nesting of OCCURS. U/SQL supports up to 10 levels of
nesting. At each level of nesting, the U/SQL Manager automatically inserts a
subscript column. (This is the name of the OCCURS with a suffix of _IDX,
although you can change the name to be more meaningful to you.)

The subscript column is effectively a key to each level of nesting.

In the example, below, two subscript fields, JBS_ACCD_IDX and JBS_ACM_IDX,
are created.

01 JBS-RECORD.

 03 JBS-KEY.
 05 JBS-NO PIC X(6).
 03 JBS-ACCD PIC S9(10)V9(2) OCCURS 12 TIMES.
 05 JBS-ACM PIC S9(10)V9(2) OCCURS 6 TIMES.

In a normalized table, each row includes all the preceding information. So, for
each JBS-RECORD, there will be 72 (12 x 6) rows with the same value for JBS-
NO.

For this example, the equivalent relational table (JBS_RECORD) is produced:

JBS_NO char(6)

JBS_ACCD_IDX integer
JOBS_ACM_IDX integer
JOBS_ACM numeric(12,2)

OCCURS DEPENDING ON

Transoft U/SQL User Guide

268

COBOL supports the concept of an OCCURS that, for each record, has a variable
number of occurrences. This is determined by the OCCURS DEPENDING ON
clause. Consider the following example:

01 CUSTREC.
 03 CUST-KEY.
 05 CUST-ID PIC 9(6).

 03 CUST-NAME PIC X(30).
 03 SALES-COUNT PIC 9(2).
 03 SALES OCCURS 1 TO 12 DEPENDING ON SALES-COUNT.
 05 SALES-ACTUAL PIC S9(10)V9(2).

 05 SALES-BUDGET PIC S9(10)V9(2).

This FD shows that the SALES OCCURS can be between 1 and 12 occurrences
DEPENDING ON the value of SALES-COUNT.

Note: The DEPENDING ON field must exist in the record.

When the U/SQL Manager's COBOL FD Converter parses the FD, it inserts an
OCCURS table field and a subscript field, which have the name of the first
field in the OCCURS with _TBL and _IDX suffixes. You can change these names
to ones more meaningful to you.

The U/SQL Manager's COBOL FD Converter registers the fact that this is an
OCCURS with a DEPENDING ON field and this is used during the accessing of the
table by ODBC-enabled products.

For this example, the equivalent relational table (CUSTREC) is produced:

CUST_ID integer
CUST_NAME char(30)
SALES_COUNT smallint

SALES_IDX integer
SALES_ACTUAL numeric(12,2)
SALES_BUDGET numeric(12,2)

For Micro Focus COBOL, the compiler directive ODOSLIDE is supported. Refer to
the section Micro Focus COBOL Compiler Directives in Chapter 3, Using U/SQL
Manager to Create a UDD.

Configure and Use

269

Using U/SQL Manager to Create a UDD

Using U/SQL Manager to Create a UDD

This section describes in detail the steps in using the U/SQL Manager to create
your dictionary (UDD) for either ACUCOBOL or Micro Focus COBOL data sources:

�� Step 1: Before You Start - Plan

�� Step 2: Copy your FDs to your PC

�� Step 3: Ensure the U/SQL Server is Running (Multiple-tier only)

�� Step 4: Start the U/SQL Manager

�� Step 5: Create a New Data Dictionary

�� Step 6: Selecting a COBOL FD File

�� Step 7: Rename Table Names (optional)

�� Step 8: Obtain Details of the Table

�� Step 9: Manipulate the Data

�� Step 10: Keys Definition

�� Step 11: File Details

�� Step 12: Write the Table Information to the Data Dictionary

�� Step 13: Create Data, Key and File Information Manually

�� Step 14: Repeat the Procedure for all your Application's Files.

The section Planning to Use U/SQL Manager summarizes all the steps required to
set up a dictionary using the U/SQL Manager. It describes what you need to do
before you start by providing an overview of the way COBOL data is represented,
and the decisions you may have to make when planning your COBOL data
dictionary.

Transoft U/SQL User Guide

270

Step 1: Before You Start - Plan

It is important that you plan what you intend to achieve before starting to set up
your dictionary. You need to consider the following:

�� Which data files are to be accessed?

�� Availability of your source file(s)

�� How your data is to be represented.

Which Data Files are to be Accessed?

You need to decide which of your application data files you want to access via
ODBC-enabled products. It is unlikely that you will want all the files used in your
application.

Make Sure you have the COBOL FDs

For the selected files, are the COBOL FDs, SELECT statements and appropriate
copyfiles available to U/SQL? An example SELECT statement from the file control
section and FD is shown below:

SELECT COMPANY
 ASSIGN TO "COMPANY"
 ORGANIZATION IS INDEXED
 ACCESS MODE IS DYNAMIC

 RECORD KEY IS COMPANY-KEY
 LOCK MODE IS AUTOMATIC
 FILE STATUS IS CHK-FILESTAT.

*
 FD COMPANY
 RECORD CONTAINS 32 CHARACTERS.
* Company Record

 01 COMPANY-REC.
 03 COMPANY-KEY.
 05 COMPANY-NO PIC 9(2).

 03 COMPANY-DESC PIC X(30).

How U/SQL Adapters Represents COBOL Data

Refer to the Planning to Use U/SQL Manager section, and the section
Representing COBOL Data that provides an overview of the way COBOL data is
represented, and the decisions you may have to make when planning your
COBOL data dictionary. The following topics are covered:

�� File Access Methods Supported

�� Dealing with Multiple 01 Records

�� Field Names

�� Dates

�� Defining NULL Columns

�� Expressions on Columns and Virtual Columns

�� COBOL REDEFINES

�� OCCURS.

Configure and Use

271

Once have established what you are trying to achieve, so you are ready to set up
your COBOL Universal Data Dictionary.

Transoft U/SQL User Guide

272

Step 2: Copy your FDs to your PC

Copy the COBOL FDs-COBOLFDs-->, SELECT statements and appropriate
copyfiles, from which you want to create your UDD, onto your Windows PC.

The copyfiles can be in different directories to the FDs.

Configure and Use

273

Step 3: Ensure the U/SQL Server is Running (Multiple-tier only)

Before starting the U/SQL Server ensure that you have a client license that allows
Read-Write capability and that the U/SQL Server ReadOnly directive is not set,
otherwise you will not be able to create a UDD.

UNIX

Run the script check_serv.sh, in the bin directory from the base of the U/SQL
Server installation on the UNIX host, to ensure that the Server is running.

./check_serv.sh

If it is not, run the script start_serv.sh in the same bin directory.

./start_serv.sh

Refer to the section Starting the UNIX U/SQL Server.

Windows NT Server

On the Windows NT Server, double-click the U/SQL Service Manager icon in
the U/SQL program group. Click on the service you wish to start, and select
Manual Start unless the U/SQL Server service is already running.

Refer to the section Starting and Stopping the Windows NT U/SQL Server.

Transoft U/SQL User Guide

274

Step 4: Start the U/SQL Manager

Windows

Double-click the U/SQL Manager icon in the program group. The Main Menu is
displayed:

For Multiple-tier installations select the Remote Server command from the
Connection Options menu. For Single-tier installations select the Local Server
option from the Connection Options menu.

The Connection Options menu additionally allows you to select the Remote
Server Defaults and Local Server Defaults.

Remote Server Defaults

The Remote Server Defaults define the default host Server Name, Port Number
and Timeout Period that are used when creating the ODBC entries for a new
dictionary in Step 5: Create a New Data Dictionary.

You will have entered the Server Name and TCP/IP Port Number on which the
U/SQL Server software were installed when you installed the U/SQL Client
software. The Timeout Period defaults to 100 seconds.

Configure and Use

275

The Server Name and Port Number entries are held in the [Transoft U/SQL
Configuration] section of the client ODBC.INI directive settings. For example:

[Transoft U/SQL Configuration]
DefaultServer=myhost

DefaultPort=7000

DefaultServer= entry is overridden by a Server= entry within a particular data

source's directives. Note, the server name, in this example myhost, is case-
insensitive.

DefaultPort= entry is overridden by a Port= entry within a particular data

source's directives.

For further details on these and other directives, refer to the section Client
ODBC.INI Directives.

Local Server Defaults

The Local Server Defaults define the defaults for the directory where a New
Dictionary will be created, the directory where the Log File will be created and the
Log Level (this is normally set to zero). Refer to the Single-tier Administration
Book for further details on these defaults and log file.

Transoft U/SQL User Guide

276

Step 5: Create a New Data Dictionary

Click the New Data Dictionary button from the Main Menu, or select the
New... command from the File menu. The New Data Dictionary dialog box is
displayed:

Enter the name you want to give the UDD, for example, books.udd, in the Name
field. The '.udd' extension is only mandatory for Multiple-tier installations. Ensure
the Create a new Data Dictionary button is set, then click OK. The 32-bit
ODBC Windows Setup dialog box is displayed for either Single or Multiple-tier:

Single-tier

For Single-tier installations, the Data Source name is automatically transferred
into the first entry box. Notice that the name of the UDD does not have to include
the '.udd' extension. You then enter the Description that you want to give the
data source.

The Data Source Driver (DSD) will default to the type for the version of U/SQL
you are using, for example Micro Focus COBOL. If you have more than one DSD
then they are listed alphabetically in the combo box.

Ensure that both the Open Exclusive and Read Only check boxes are NOT
selected, otherwise you will not be able to create a UDD.

In the Data Dictionary Path & File entry box, the path is the default defined by
the Local Server Defaults, described in step 4, and the dictionary name is the
Data Source name, with a '.udd' extension automatically added. You can change
this by clicking the Path... button to display a browser to change the path and
UDD name. Note, the '.udd' extension is mandatory.

Configure and Use

277

These are the minimum entries which will be added automatically to the
ODBC.INI directives when you click OK and you are ready to continue with the
section Add Data Dictionary Entries.

Additional entries can be entered after clicking the Translator… and
Advanced... buttons. These entries are described in the Single-tier
Administration Book.

Multiple-tier

For Multiple-tier installations, the Data Source Name is automatically
transferred into the first entry box. Notice that the name of the UDD must include
the '.udd' extension. You then enter the Description that you want to give the
data source.

The Server Name and Port Number will be automatically entered from the
equivalent Remote Server Defaults dialog box. You can change them if you wish
to but they must refer to the server name and port number on which the U/SQL
Server software in installed.

Then enter the Timeout value in seconds. The Timeout directive represents the
time, in seconds, that a client will wait while attempting to connect to the server.
The Timeout does not apply after a connection has been established - the client
will wait indefinitely for data from a query regardless of this value.

Note: Refer to the section Client ODBC.INI Directives for further details on these
directives.

When you have completed the entries in the dialog box, click OK and you are
ready to add Data Dictionary entries.

Add Data Dictionary Entries

When your empty data dictionary has been created the following form is
displayed. If you are opening an existing dictionary, the list of table names that
have previously been entered is displayed.

Transoft U/SQL User Guide

278

To add entries you can either:

�� Click the FD button on the Tool Bar, or

�� Click the New button on the Data Dictionary Maintenance dialog box.

The COBOL FD Converter dialog box is displayed:

The Type field confirms whether you are creating a dictionary for either
ACUCOBOL or Micro Focus COBOL.

Compiler Options and Directives

The data stored in your data files is dependent on the compiler and storage
options used when the data was created. The record length can be adjusted by
the compiler flags.

The compiler can pick up these options and directives from various places, for
example, the Micro Focus COBOL cobopt file.

Configure and Use

279

Therefore it is important to ensure these options and directives are
correctly set in the U/SQL Manager to match those in use.

ACUCOBOL Compiler Options

When you click the Options... button, the COBOL Parser Options dialog box for
the ACUCOBOL Options is displayed:

Set the appropriate ACUCOBOL compiler switches for your data. An explanation of
each switch can be obtained by holding down the left mouse button over each
option. You will need to set either the -Sa or -St options, that treat all input
source files as ANSI or TERMINAL format, respectively. The U/SQL Manager does
not support mixed formats.

It is very important that you set all other compiler and storage options to those
used to create the data files in the first place. For example, if Dca is not set
properly, the value of 0 is not written correctly to COMP-3 (amongst other
things).

Mixed case column names are supported. These are used for report headings.
However, column names in SQL statements are case independent.

For further help refer to your ACUCOBOL documentation.

Micro Focus COBOL Compiler Directives

When you select the Options... button, the COBOL Parser Options dialog box
for the Micro Focus COBOL Compiler Directives is displayed:

Transoft U/SQL User Guide

280

Set the appropriate source format switch for your FDs. An explanation of each
switch can be obtained by holding down the left mouse button over each option.

It is very important that you set all other storage modes to those used to create
the data files in the first place. If you do not do so invalid data will be presented
to ODBC-enabled products and more importantly if you write back to your data
files they will become corrupted.

Note, the compiler directive ODOSLIDE, indicating ODOSLIDE compiler directive
(Micro Focus)OCCURS Depending On Slide is supported. ODOSLIDE
OCCURSODOSLIDE (Micro Focus)affects data items that appear after a variable-
length array in the same record; that is, after an item with an OCCURS
DEPENDING ON clause but not subordinate to it. With ODOSLIDE, these items
always immediately follow the array, whatever its current size; this means their
addresses change as the array size changes.

Mixed case column names are supported. These are used for report headings.
However, column names in SQL statements are case independent.

For further help refer to your Micro Focus COBOL documentation.

Configure and Use

281

Step 6: Selecting a COBOL FD File

Ensure that the COBOL FD source file(s), from which you wish to create your
UDD, are on your Windows PC. Then click the Name button on the COBOL FD
Converter dialog box, which displays the Select COBOL Source File browser.
Select a COBOL Source File, which can have one of the following extensions '.cbl',
'.cpy', '.cpb' or '.cob'. Alternatively, if the source file is not one of these types,
use the All file selection (*.*). When you have selected a file, it is displayed in
the COBOL FD Converter dialog box.

If your selected file requires copyfiles from another directory, click the Path
button and use the browser to enter their path. Click Convert for the COBOL FD
Converter to parse this COBOL source file and any associated copyfiles.

The COBOL FD Converter will only parse one source file at a time. However, this
file can contain FD details of any number of COBOL files and records.

You do not need to have defined SELECT statements. However, if they are not
defined, the COBOL FD Converter cannot determine the index key entries and you
will have to enter them manually. Alternatively, include them from other files as
copyfile entries.

Note: It is very important to check that each index contains all the key
components.

If no SELECT or FD statements are found in the file being converted by the
COBOL FD Converter, the following message is displayed:

FD Convertor Error
'C:\Program Files\USQLC\BookDemo\DATA\book.cbl'

Can't find any SELECT or FD statements in this file. Try changing the
Source File Options that are available from the Options button on the
FD Converter.

Assuming the COBOL FD Converter has found the relevant information, a list of
FD names and Table names is displayed:

Transoft U/SQL User Guide

282

Configure and Use

283

Step 7: Rename Table Names (optional)

The Table names are visible to the ODBC-enabled products and are the names
that are used in all SQL statements. To rename a Table name click the Rename
button. The Rename: ... dialog box is displayed:

Enter the new name in the Enter Table Name field and click OK.

Transoft U/SQL User Guide

284

Step 8: Obtain Details of the Table

Select an FD/Table name, on the COBOL FD Converter dialog box, and then
either double-click it or click the Open button to further parse the FD
information.

A property sheet is displayed containing the File, Data and Keys property pages
for the selected FD record from the FD information:

Review these property pages in the following order:

�� Data

This property page contains details of all the fields that make up the FD
record. Decide whether you want all these fields to be available to the ODBC-
enabled products or a reduced 'view'. Ensure that all key fields are always
included.

You may want to change the field names to be more meaningful and to comply
with SQL syntax. Decide on the treatment of REDEFINES - whether you want
the main field or its components.

For dates, NULL fields and column expressions, define the format you
require.

You must establish how you wish to treat any OCCURS.

�� Keys

If a COBOL SELECT statement was available during the parsing of this FD
record's details, all the necessary primary and alternate indexes will have been
automatically included. Check that they are correct.

If they were not automatically set up, you must enter the details manually.
Remember, if you have changed any of the field names in the Data property
page, these new names must be used in the indexes.

�� File

This property page contains details of the name, organization type (for
instance, indexed or indexed variable), and directory of the physical file. It
also allows an expression to be entered that is used by the U/SQL Server to
differentiate between multiple record types in the same physical file.

Configure and Use

285

The following sections deal with these three property pages, Data, Keys and File,
in this order.

Transoft U/SQL User Guide

286

Step 9: Manipulate the Data

Select the Data tab. The Data Description property page is displayed:

By default the main Structure view of the data items is displayed.

Select the Data radio button to obtain the alternate COBOL view of the data
items:

In most cases, you will work using the Structure view of the data items, as it is
clearer and contains only the information you need to consider.

The above example shows details of the two views, the Structure and the Data,
for the simple Data Description of the CUSTOMER table.

The forthcoming sections consider each of the items in the two views, in turn.

�� Structure view

�� Data view.

Configure and Use

287

Transoft U/SQL User Guide

288

Structure View

You will normally work with this structure view of the fields. The following
sections explain each of the columns in the table:

�� Fields to be Written to the Dictionary

�� LV

�� NAME

�� PICTURE

�� USAGE

�� OPTIONS.

Fields to be Written to the Dictionary

or

The first column has either a pen icon indicating that the details will be written to
the dictionary or an X indicating that they will not. You toggle between these
states by clicking on the required element.

By toggling fields on or off, you decide which fields you want to include in the
logical table that is visible to ODBC-enabled products. This allows you to create
SQL views of the data that differ from what is actually present on the file.

Any field that forms part of an index must be written to the table.

Note: COBOL 01 level Record and Group Items are always marked X and are not
written to the UDD. Only elementary-items can be written to the dictionary, that
is, items that have a picture.

You can use the Write All or Write None buttons to set either all fields to be
subsequently written to the UDD or none at all. These facilities can be a useful
short-cut for establishing the fields that you want to see in the final table that can
be accessed via the ODBC-enabled products.

Configure and Use

289

COBOL Level (LV)

LV is the COBOL-level indicator of each field, in the COBOL FD, and has no
relevance to U/SQL. It is included for reference only.

NAME

This is the name of the field (or column, as it is called in relational terminology)
that will be used in all SQL statements. It is very important to make these names
as meaningful as possible.

Note: Column names that are the same in two tables are automatically joined by
most ODBC-enabled products which makes these products easier to use. Having
CUSTCODE in one table and CODE in another, both representing the customer
code, would not automatically join together, while making them both CUSTCODE
would.

Each column name is normally limited to the ODBC compliant 18 characters,
however you can optionally allow a maximum of 30 characters. If you use the
optional 30 characters, ensure the ODBC-enabled applications you propose to use
are capable of accessing column names of this size.

From the Data Dictionary menu, select Options and set Allow Long Names to
use up to 30 character column names.

However, very often, COBOL field names are longer than 30 characters. You can
check, by clicking the Check button that the names all satisfy the following
conditions:

�� are within either the 18 or 30 character limits

�� are unique

�� are not SQL keywords

�� are not zero length

�� are made up of 0-9, A-Z, a-z, _, with the first character alphabetic and
with no blanks

You are notified of all field names that do not meet the above criteria and why.
You can then modify the names.

In order to ensure the field names meet these criteria, you have two options:

�� Click the Generate button. The Generated Field Names dialog box is
displayed:

Transoft U/SQL User Guide

290

This dialog box automatically generates valid names based on the existing
names. Click Apply to substitute these names for the originals. By double-
clicking on any name, you can make further manual changes.

The corresponding names in the index Key fields will be updated as well.

Note: This is the quickest way of creating valid dictionary entries.

�� Alternatively, click the Filter button. The Field Name Filters dialog box is
displayed:

This facility allows you to:

�� Remove Text from Field Names - Allows you to remove text from
anywhere in the names.

�� Replace Text in Field Names - Asks you to enter the Find What
and the Replace With texts.

�� Add Text to Field Names - Asks you what text you want added to
either the beginning or the end of the names.

Choose the filter you want and then click Next >>.

Click the Apply button to make the changes.

Very often COBOL field names are of the form:

01 MAS-EMPREC.
 03 MAS-EMP-KEY.
 05 MAS-COMPANY PIC 9(2).

 05 MAS-NUMBER PIC 9(5).
 05 MAS-REC-TYPE PIC X.
 03 MAS-ALT-KEY.
 05 MAS-LASTNAME PIC X(20).

Configure and Use

291

where, in this case, there is a leading MAS-, which you may wish to remove

automatically from all the fields as follows:

After the COBOL FD Converter has parsed this record, notice the '-'
characters have already been converted to '_' characters:

To remove the leading 'MAS_', click the Filter button. Select Remove Text
from Field Names and then click Next >>. The following dialog box is
displayed:

Enter the Text to be Removed and select Start of Field Names. Click
Next>> and the filtered field names are displayed which you can apply to
the table:

Transoft U/SQL User Guide

292

Note: This process, of removing and adding text to field names, can be
applied reiteratively to obtain the desired result.

REDEFINES

Here is an example REDEFINES:

FD CODE-FILE.
01 CODE-REC

 03 CODE-FIELD PIC X(16).
 03 CODE-PARTS REDEFINES CODE-FIELD.
 05 NAME_PART PIC X(10).
 05 NUMBER PIC 9(10) COMP-3.

This will be parsed and displayed as follows in the Data Description.

The UDD can hold the main field or its redefined component parts.

The FD parser assumes that all fields within a REDEFINES need to be added to
the dictionary. For instance, in the example above, CODE_FIELD and its
components CODE_NAME and NUMBER are all set with a Pen icon in the first
column to indicate they will be written to the dictionary. Note that the
CODE_FIELD and the CODE_NAME field will have the same byte offset in the
physical file.

If you do not want any particular redefined field to be included in the dictionary,
simply mark it by clicking on the first column to set it to X.

You may wish to have only records of a particular type defined by this table.
These records would be selected depending on the value of one of the
components of the REDEFINES. You can do this by including a record Expression
in the File Description details, as described in section Step 11: File Details later in
this chapter.

In the above example, you may wish to select only records where the NUMBER
field contains values greater than zero. In this case, enter the record expression:

NUMBER > 0

in the Expression entry box on the File description details.

PICTURE

PICTURE is the COBOL picture of the field. The maximum size of the SQL
alphanumeric data type is 254 bytes and is a general restriction of ODBC-enabled
products. For fields bigger than this, the U/SQL Manager splits the field into a
number of columns giving the new columns <NAME>1, <NAME>2 to <NAME>n,
where <NAME> is the original name of the field.

When adding a column manually, it is best to enter the PICTURE first, followed
by the other entries.

Note: The combination of the entries in PICTURE and USAGE (see below) denotes
each field's data type, which is automatically converted to the appropriate ODBC
data type.

USAGE

USAGE is the COBOL usage of the field. Click the USAGE field and a button
appears. Click the button to display a menu of supported entries, for example
DISPLAY, BINARY, COMP, and so on.

Configure and Use

293

Normally, the entry is determined from the FD, but, if you are Adding a New
Column (Field), you will need to specify its usage.

Note: The combination of the entries in PICTURE and USAGE denotes each
field's data type, which is automatically converted to the appropriate ODBC data
type.

OPTIONS

The OPTIONS column can contain a combination of "E", "N", "D" and "O",
indicating that an Expression, NULL Values, Date or Occurs has been defined
for any field in the record. In addition, OPTIONS can contain "V" indicating that
the field is a Virtual column. If you want to declare any of these options for a
particular field, click the OPTIONS entry for that field (which to start with will be
blank) and a button appears. Click the button to display the following sub-menu:

Expression...

Virtual...

Null Values...

Date...

Occurs...

Then make your selection. The following sections describe how to set-up the
following options:

�� Expression

�� Null Values

�� Date

�� Occurs.

A virtual column can be defined in any table (record), where the value is
determined from a column expression. A new column can be added to the table
after the original record's FD details have been entered into the dictionary: refer
to the section Adding a New Column (Field) in the next chapter, Modify a UDD.

Column Expression
As described in the Expressions on Columns and Virtual Columns section, an
expression can be placed on any column (field) to change its value depending on
the value of other columns in the same row (record).

If you want to place an expression on a column, click the OPTIONS entry for that
column and a button appears. Click the button to display the submenu, and select
Expression.... The following dialog box is displayed:

Enter the expression and click OK.

Transoft U/SQL User Guide

294

Defining NULL Values

As described in the Defining NULL Columns (Fields) section, it is often useful if a
particular value in a column (field) can be considered the SQL NULL value.

If you want to define NULL Values on a column, click the OPTIONS entry for that
column and a button appears. Click the button to display the submenu, and select
the Null Values command. The following dialog box is displayed:

Enter the NULL value to be used and click OK.

SQL Date Formats

U/SQL is capable of manipulating a broad range of physical date formats, which it
maps to the ODBC SQL Date data type (CCYYMMDD) that then allows date
formatting and sorting by ODBC-enabled products.

If the field is known to be a date, click the Options entry and a button appears.
Click the button to display the submenu, and select the Date... command. The
Date Type dialog box is displayed:

The field is initially defined as This is not currently a Date Field. The following
additional options are available:

�� Define a Date Format string

�� Define field as a Julian Date.

Date Format String

If you click Define a Date Format string for the field, the dialog box is
expanded and appears as below:

Configure and Use

295

This dialog box allows you to:

�� Pick one of the existing formats, by highlighting it and clicking the Select
button or by double clicking on it, or

�� Enter your own format. Click the Add… button. The Add Date Format is
displayed:

The Date Format String must be less than or equal to the length of the
field it is defining. You are warned if this not the case. Characters that are
allowed in the Date Format String are:

�� For day: D

�� For month: M

�� For year: Y

�� For century: C

�� For special formats: I, F and R - see below

All other characters are assumed to be separators, such as '/', or '-'.

FixedDateOffset

Transoft U/SQL User Guide

296

The optional directive, FixedDateOffset=nn, allows you to define a 'cut-off' year
below which dates with two digit years are considered to be 20nn. The value of
'nn' may be 0 to 99. Assume, nn=30, then any year 0 to 29 is considered 2000 to
2029 and any year 30 to 99 is considered to be 1930 to 1999.

Before using this directive you should check that existing date data does not
come into the range prior to the offset date. Obviously, setting the directive will
'move' any such dates forward by 100 years. To check whether any records exist
with dates in this range issue the following query:

select count(*) from <table> where <date> <"19nn-1-1"

If the count is zero then no such records exist.

For further details on FixedDateOffset and other directives, refer to the ODBC.INI
Directives section.

Note: Illegal dates are treated as NULL and a warning is written to the log file.

Special Date Format Strings

The following Date Format strings can be added if required:

�� Format string - IYYMMDD

A common storage requirement for dates is to store in the form YYMMDD.
Consider the following COBOL type structure:

01 W-DATE.

 03 W-YY PIC 99.
 03 W-MM PIC 99.
 03 W-DD PIC 99.

This is populated by a statement such as:

ACCEPT W-DATE FROM DATE.

With some compilers, the fact that W-DATE is a 'group field' and hence by

implication alpha-numeric will prevent this syntax from being accepted,
however if W-DATE is defined as PIC 9(6) then it is an acceptable picture

clause. An equally acceptable alternative is to define the field as PIC 9(6)
COMP.

When considering year 2000 compliance, and indeed any date after 31st
December 1999, the six digit format will (potentially) store the dates out of
sequence. For example 31-Dec-1999 is 991231 and 01-Jan-2000 is
000101.

As 101 < 991231, sorted dates will be out of sequence.

One way of extending the life of the mechanism is to allow the 'year'
component to exceed 99, that is year 100 = 2000, 101 = 2001 and so on.
This can be done by extending the digits in the picture to 9(7), however
this will generally change the underlying data storage requirement, and this
will probably require the data to be re-formatted.

There are exceptions to this rule which can be exploited. For example a PIC
9(6) COMP requires 3 bytes or 24 bits of storage, and the largest number
that can be stored is 8388607 (although some systems may set other
internal limits).

Care needs to be taken, however, when exploiting this 'overflow' situation.
With Micro Focus COBOL, the "NOTRUNC" directive must be enforced on all
programs. The equivalent ACUCOBOL compiler switch is -Dz.

Failure to enforce these directives on all programs will result in a 'move'
truncating the date and loosing the overflow digits which are being used to
hold the century marker.

Configure and Use

297

If this method is used to store dates after 1999, U/SQL Adapters supports
an extended 'picture' to decode the year. The date format string YYMMDD
will decode the traditional 6 digit year in the range 1900 to 1999.

The date format string IYYMMDD will decode the overflow digit so that
dates from 1900 to 2099 can be processed, either from a PIC 9(7) data
item, or from a PIC 9(6) COMP data item where the data is able to overflow
the picture within the bounds of the underlying data storage.

�� Format string - IYYDDD

o 6 byte, un-terminated alphanumeric date.

o I represents century , and it is '0' for 1900 and '1' for 2000.

o YY represents a standard two-digit numeric character
representation of the year.

o DDD represent a julian date.

�� Format string - C1YYDDD

o 6 byte, un-terminated alphanumeric date.

o C1 represents century , and it is '1' for 1900 and '2' for 2000.

o YY represents a standard two-digit numeric character
representation of the year.

o DDD represent a julian date.

�� Format string - RCRYRMRD or RYRMRD

The RC, RY, RM & RD tokens are used to make up nines compliment dates -
either RCRYRMRD or RYRMRD.

A date with date format string of RCRYRMRD has a stored value of
(99999999 - CCYYMMDD) and one stored as RYRMRD has a value of
(999999 - YYMMDD).

For example, 1997-12-08 using RCRYRMRD stores (99999999 -
19971208) = 80028791 and 1997-12-08 using RYRMRD stores (999999 -
971208) = 028791.

�� Format string - FYMMDD

o 6 byte, un-terminated alphanumeric date.

o F is in the range of <space> (ASCII 32) to 'I' (ASCII 73)
representing the decades 1740 to 2150.

o Y is in the range of '0' (ASCII 48) to '9' (ASCII 57) representing the
least significant digit of the year.

o MM and DD represent a standard two-digit numeric character
representation of the month and day.

o Format string - FCRMRD

o 6 byte, un-terminated alphanumeric date.

o F is in the range of <space> (ASCII 32) to 'I' (ASCII 73)
representing the decades 2150 down to 1740. The character value is
calculated by subtracting the Frontier format decade value from 105.

o C is in the range of '0' (ASCII 48) to '9' (ASCII 57) representing the
nines compliment of the least significant digit of the year. The
character value is calculated by subtracting the digit's ASCII value
from 105.

o RM and RD represent a two-digit numeric character representation
of the month and day in nines compliment format.

Transoft U/SQL User Guide

298

Julian Dates

Click the Define field as a Julian Date radio button on the Date Type dialog
box, and the dialog box is expanded as is shown below:

This dialog box you to:

�� Pick one of the existing formats, by highlighting it and clicking Select, or
by double clicking it

�� Enter your own format. Click the Add… button. The Julian Date Offset
Calculation dialog box is displayed:

You either enter the commencement Date for your Julian date and click
Calculate, which calculates the Julian Offset, where 1 is 1st January 0001
(the base or epoch date). Alternatively, enter the Offset number of days (if
you know it) and click Calculate, which calculates the commencement
Date.

OCCURS

Note: A detailed discussion on OCCURS is provided in the Handling Data Arrays
section.

U/SQL can handle differing COBOL OCCURS.

OCCURS can be flattened out into individual unique fields, or maintained as any
combination of the following:

Configure and Use

299

�� Repeating groups

�� Parallel OCCURS

�� Nested OCCURS

�� OCCURS DEPENDING ON (and, optionally, for Micro Focus EXTFH,
ODOSLIDE).

Each of these is described below.

Note: Clicking the Write All button does not write OCCURS to the UDD, by
default.

OCCURS Flattened out into Individual Unique Fields

Consider the following example of the ADDRESS that OCCURS three times:

03 ADDRESS PIC X(30)
 OCCURS 3 TIMES.

For this type of OCCURS, you would want to flatten it out into individual fields,
one for each address line, to be the equivalent of:

03 ADDRESS1 PIC X(30)
03 ADDRESS2 PIC X(30)
03 ADDRESS3 PIC X(30)

When the COBOL FD Converter parses the FD, it automatically assumes that the
OCCURS is to be a repeated group. It therefore inserts an OCCURS table field
and a subscript field, which have the name of the first field in the OCCURS with
_TBL and _IDX suffixes. In this example, these are ADDRESS_TBL and
ADDRESS_IDX. In the OPTIONS column for ADDRESS_TBL, there is an entry "O",
indicating an OCCURS.

Notice that none of the fields will currently be written to the dictionary, as they
are all set to X in the first column. To include the OCCURS in the details to be
written to the dictionary, click on the first column position (that is, the X) of the
OCCURS table field, for example, ADDRESS_TBL. The following message is
displayed:

Clicking OK will cause all the fields of the OCCURS to be available to be written to
the dictionary, denoted by the icon, but a repeated group is still assumed.

Click the OPTIONS column for the ADDRESS_TBL field and a button will appear.
Click the button, and select Occurs... to display the Occurs dialog box:

Select the Individual Fields button, then click OK. The OCCURS is then re-
written as individual unique fields, as shown below:

At this point you have finished working with the Data or fields definition, unless
you need to deal with Repeating Groups, Parallel OCCURS, Nested OCCURS,

Transoft U/SQL User Guide

300

or OCCURS DEPENDING ON functions. These topics are covered in the following
sections.

Repeating Groups

Consider the following example FD with the JOBS-GROUP occurring 12 times:

01 JOBS-RECORD.
 03 JOBS-KEY.

 05 JOBS-NO PIC X(6).
 03 JOBS-NAME PIC X(30).
 03 JOBS-DESCRIPTION PIC X(50).

 03 JOBS-GROUP OCCURS 12 TIMES.
 05 JOBS-ACCD PIC S9(10)V9(2)
 SIGN TRAILING SEPARATE.
 05 JOBS-PAID PIC S9(10)V9(2)

 SIGN TRAILING SEPARATE.

The JOBS-GROUP OCCURS can be considered as 12 rows in a relational table,
that is, for each JOBS-RECORD there will be 12 repeating rows as a group. When
the COBOL FD Converter parses the FD, it automatically assumes that the
OCCURS is to be a repeated group and inserts an OCCURS table field and a
subscript field, which have the name of the first field in the OCCURS, with _TBL
and _IDX suffixes. In this example, these are JOBS_GROUP_TBL and
JOBS_GROUP_IDX respectively.

Notice that none of the fields will currently be written to the dictionary, as they
are all set to X in the first column. To include the OCCURS in the details to be
written to the dictionary, click on the first column position (that is, the X) of the
OCCURS table field, for example, JOBS_GROUP_TBL. Then click again and the
following message is displayed:

Click OK and all the fields of the OCCURS will be available to be written to the
dictionary.

For a repeated OCCURS group, the subscript field is effectively an extra index
key which, in this case, will have a value of 1 through 12 for each occurrence row
for each JOBS_RECORD.

When written to the dictionary, this extra subscript field is visible to ODBC-
enabled products, so it is advisable to change it to something more meaningful to
you, such as MONTH_NO in this example. To do this, click the OPTIONS column
for the JOBS_GROUP_TBL field and a button will appear. Click the button and
select Occurs.... The Occurs dialog box is displayed:

Configure and Use

301

This index field is also added as the last component of the index key. Ensure that
this change of name is also reflected in the index: refer to the Step 10: Keys
Definition section.

The OCCURS, JOBS_GROUP_TBL is defined as a Repeating Group. You can
change the Index Field Name, that is, the JOBS_GROUP_IDX subscript field, to,
say, MONTH_NO to be more meaningful. Click OK.

Note:

When you perform the following SQL query:

Select * from JOBS_RECORD;

on this JOB_RECORD table via your ODBC-enabled product, for each
JOBS_RECORD on file you will have 12 rows displayed. The same values of
JOBS_NO, JOBS_NAME and JOBS_DESCRIPTION will be repeated in each of the
12 rows. The new MONTH_NO column will have values of 1 through 12.

Define Another Logical Table

An alternative to maintaining the OCCURS as a repeating group within the
existing record is to define another logical table that just contains the key
information of the main record together with the repeating group.

Using our JOBS_RECORD, from the Occurs dialog box, click the Table button. The
following message is displayed:

Transoft U/SQL User Guide

302

Click Yes to create a new logical table called JOBS_GROUP_TBL and put it into
the COBOL FD Converter dialog box:

The U/SQL Manager returns you to the Occurs dialog box. After clicking OK on
the Occurs dialog box, you will still be in the original JOBS_RECORD details.
Ensure that the OCCURS fields are 'switched off', that is, marked by an X in the
first column, so that they will not be written to the dictionary. If they are not
marked with an X, click on the pen icon against the JOBS_GROUP_TBL entry.
Thus JOBS_RECORD only contains the view of the fields JOBS_NO, JOBS_NAME
and JOBS_DESCRIPTION.

If you exit from the JOBS_RECORD details using the Close button, the COBOL
FD Converter dialog box is displayed:

Open the new table JOBS_GROUP_TBL from the COBOL FD Converter dialog
box, and you will see again all the fields from the original JOBS_RECORD table.
However, now the non-key fields are set to be excluded from updating the
dictionary, as shown below.

Check that all the key fields are to be written to the dictionary.

At this point you have finished working with the Data or fields definition of the
two tables JOBS_RECORD and JOBS_GROUP_TBL. You will probably want to
rename this latter table, as previously described.

Unless you need to deal with Parallel OCCURS, Nested OCCURS or OCCURS
DEPENDING ON functions, you can skip to the Reference View of the Data Fields
section or the Step 10: Keys Definition section.

Parallel OCCURS

It is possible to have more than one OCCURS defined as repeating groups within
the same logical table, known as parallel OCCURS, but they must all have the
same number of occurrences. The COBOL FD Converter automatically inserts a
single subscript field, called INDEX1, before the first of the repeating groups. You
can change this name to one more meaningful to you. Each repeating group will
also have an OCCURS table field that has the name of the first field in the
OCCURS, with _TBL extension.

Configure and Use

303

For example, the JOB_RECORD below has three repeating groups each of 12
occurrences. The subscript field would appear before JOBS_ACM and would be
automatically created as INDEX1, with the three OCCURS table fields. In this
example, these are JOB_ACM_TBL, JOB_PYM_TBL and JOB_BLM_TBL,
respectively.

This subscript field (INDEX1) is effectively an extra index key which, in this case,
will have a value of 1 through 12 for each occurrence row for each JOB_RECORD.

01 JOB-RECORD.
 03 JOB-KEY.

 05 JOBS-NO PIC X(6).
 03 JOB-GROUP.
 05 JOB-ACCD PIC S9(10)V9(2)

 SIGN TRAILING SEPARATE.
 05 JOB-ACM PIC S9(10)V9(2)
 SIGN TRAILING SEPARATE
 OCCURS 12 TIMES.

 05 JOB-PAID PIC S9(10)V9(2)
 SIGN TRAILING SEPARATE.
 05 JOB-PYM PIC S9(10)V9(2)

 SIGN TRAILING SEPARATE
 OCCURS 12 TIMES.
 05 JOB-BILL PIC S9(10)V9(2)
 SIGN TRAILING SEPARATE.

 05 JOB-BLM PIC S9(10)V9(2)
 SIGN TRAILING SEPARATE
 OCCURS 12 TIMES.

The COBOL FD Converter produces the following Data Description display for this
JOB_RECORD.

You must decide how you wish to treat each of the OCCURS. In this case, you will
probably keep them in the one table as parallel OCCURS. Alternatively, you can
'mix & match' the differing types of OCCURS. In this example:

Each OCCURS could be a separate logical table, or

One or more of them could be flattened into individual unique fields within the
same overall table, or

There could be a combination of the two.

At this point you have finished working with the Data or fields definition of the
above tables, unless you need to deal with Nested OCCURS or OCCURS
DEPENDING ON functions. These topics are covered in the following pages, or you
can skip to the Reference View of the Data Fields section or the Step 10: Keys
Definition section.

Nested OCCURS

COBOL allows multiple nesting of OCCURS. U/SQL Adapters supports this with up
to 10 levels of nesting. When the COBOL FD Converter parses the FD, it inserts
an OCCURS table field and a subscript field, at each level of nesting, which
have the name of the first field in the OCCURS with _TBL and _IDX extensions.

The subscript field is effectively an extra index key at each level of nesting. You
can change the generated names to be more meaningful to you.

In the example below, two subscript fields, JBS_ACCD_IDX and JBS_ACM_IDX,
are created.

01 JBS-RECORD.
 03 JBS-KEY.

Transoft U/SQL User Guide

304

 05 JBS-NO PIC X(6).
 03 JBS-ACCD OCCURS 12 TIMES.

 05 JBS-ACM PIC S9(10)V9(2)
 SIGN TRAILING SEPARATE
 OCCURS 6 TIMES.

Note: Each row at each level of nested selection will include all the preceding
levels' fields repeated. In the case above, for each unique JBS_KEY, 72 rows will
be retrieved at the second level of nesting.

You must decide how you wish to treat each of the OCCURS. You can keep it as
one table as nested OCCURS. Alternatively, you can 'mix & match' the differing
types of OCCURS. In this example:

�� Each OCCURS could be a separate logical table (although you cannot have
an 'inner' OCCURS in a separate table without including its parent
OCCURS), or

�� One or both of them could be flattened into individual unique fields within
the same overall table, or

�� There could be a combination of the two.

At this point you have finished working with the Data or fields definition of the
above table(s). Unless you need to deal with the OCCURS DEPENDING ON
function, you can skip to the Reference View of the Data Fields section or the
Step 10: Keys Definition section.

OCCURS DEPENDING ON

COBOL supports the concept of an OCCURS that, for each record, has a variable
number of occurrences. This is determined by the OCCURS DEPENDING ON
clause. Take the following example:

01 CUSTREC.
 03 CUST-KEY.

 05 CUST-ID PIC 9(6).
 03 CUST-NAME PIC X(30).
 03 SALES-COUNT PIC 9.

 03 SALES OCCURS 1 TO 12 DEPENDING ON SALES-COUNT.
 05 SALES-ACTUAL PIC S9(10)V9(2).
 05 SALES-BUDGET PIC S9(10)V9(2).

This FD shows that the SALES occurs between 1 and 12 times and is DEPENDING
ON the value of SALES-COUNT.

When the COBOL FD Converter parses the FD, it inserts an OCCURS table field,
which have the name of the first field in the OCCURS with _TBL and _IDX
extensions. You can change this subscript name to one more meaningful to you.

Notice that the PICTURE column in the Data Description field has an OCCURS 1
to 12 against it, in this example, the SALES_TBL field.

To include the OCCURS in the details to be written to the dictionary, click the first
column position (that is, the X) of the OCCURS table field, for example
SALES_TBL.

Then click the OPTIONS column for the SALES_TBL field and a button will
appear. Click the button and select Occurs.... The Occurs dialog box is
displayed:

Configure and Use

305

You will see that the OCCURS, SALES_TBL is defined as a Repeating Group
which is Variable Length, with a Maximum Size of 12 and a Minimum Size of 1,
and where the Depending On field is SALES_COUNT. You can change the Index
Field Name, that is, the subscript field SALES_IDX, to, say, MONTH_NUMBER to
be more meaningful to you.

For Micro Focus COBOL, the compiler directive ODOSLIDE is supported. Refer to
the Micro Focus COBOL Compiler Directives section.

At this point you have finished working with the Data or fields definition of the
table. Proceed to the Reference View of the Data Fields section, or the Step 10:
Keys Definition section.

Transoft U/SQL User Guide

306

Data View

Reference View of the Data Fields

Select the Data radio button to view the COBOL reference view of the Data
Description of the field items making up the record.

The additional columns of information not already described in the Structure View
section, are detailed below.

SEQ

You can change the sequence number of the fields and then use the Sort button
to re-sequence the field names, for example, to give better grouping of the field
items as they will appear to the ODBC-enabled product user. The byte offsets do
not change.

You can also re-number the sequence numbers, in steps of 10, using the
Renumber button.

The following columns are obtained from the COBOL FD and must not be
changed:

SIGN

Click the SIGN field and a button appears. Click the button to display a menu of
supported entries, for example, LEAD, LEAD SEP, TRAIL, and so on.

Normally, the SIGN entry is determined from the FD, but, if you are Adding a
New Column (Field), described in the next chapter, Modify a UDD, you will need
to specify the SIGN entry.

OFFSET

Byte offset of the field within the record.

LEN

Length of field in bytes. The maximum size of the SQL alphanumeric data type is
254 bytes and is a general restriction of ODBC-enabled products. For fields bigger
than this, the COBOL FD Converter will automatically split the field into a number
of columns giving the new columns <NAME>1, <NAME>2 to <NAME>n, where
<NAME> is the original name of the field.

Configure and Use

307

DEC

Number of decimal places.

Transoft U/SQL User Guide

308

Step 10: Keys Definition

After you have defined the details of the Data or fields definition, select the Keys
tab. The Key Definitions property page is displayed:

If COBOL SELECT statements are supplied, the COBOL FD Converter creates all
the Key Definitions automatically and you will not usually make any changes. If
subscript fields have been generated for OCCURS then these are automatically
added to the end of the key components. If the name of a subscript field is
changed then ensure that the index entry is also changed.

If your COBOL FDs qualify data names in the specification of any index, that is:

RECORD KEY IS <data-name> OF <record-name>

then the U/SQL Manager may not correctly identify this key field.

It is therefore important to check that the entries for each index contain all the
key components. Failure to do so will result in performance degradation as the
index will not be used in certain cases, when it should be.

You can check the contents of your indexes using the appropriate COBOL utility:

�� ACUCOBOL - utility vutil

�� Micro Focus COBOL - utility fhinfo

Refer to your COBOL documentation for further details.

Manually Adding an Index

If the SELECT statements are not supplied, the Key Definitions must be manually
entered.

Click the Add button, which creates an entry under the KEYNO and
DUPLICATES headings, as ALT-x and UNIQUE, where 'x' is the next index
number. If you want to change the KEYNO, click the field and a button appears.
Click the button to display a list box of PRIMARY, ALT-1 to ALT-64, allowing up
to 65 indexes for each table (record). Make your selection.

If the index you are defining allows duplicates, click the UNIQUE field to display
a button. Click this button, then select DUPLICATES.

Configure and Use

309

At this point, you add the fields 1 to 64 that make up this index key. Remember
to remove the '_' character from each field used. Should you try to add a field
(column) name that does not exist in the table, then the Invalid Field Name
message is displayed.

ACUCOBOL - Order of alternate indexes

The U/SQL Manager orders secondary indices in the same way that ACUCOBOL
does. This means that index information is gathered from the SELECT information
in the definition file, it is then sequenced using the FD section to ensure that the
ordering of the indices matches the physical ordering of the fields in the data file.

This checking is limited to the first part of any secondary index, therefore in the
situation where two indices have matching first parts, their order will be
determined by the SELECT statement and not by the FD information.

Deleting an Index

To delete an index entry, click on the appropriate index and click the Delete
button.

At this point you have finished working with the Keys definition of the table.
Proceed to the Step 11: File Details section .

Transoft U/SQL User Guide

310

Step 11: File Details

After you have defined the details of the Data or fields definition and the index
Keys definition for a particular table, select the File tab. The File Details
property page is displayed:

This property page is used to enter details of the name of the physical file on the
disk that relates to this logical table. Remember, if you have multiple 01 records
in a COBOL FD, you will have separate logical tables for each record type but they
will have the same physical file details. They are differentiated by having an
expression that allows each record type to be separately selected.

In the example below, the FD for the physical file EMPFILE has two 01 records,
Employee Master and Employee Salary records. There will be two logical tables
defined, both with the same file details, apart from the Expression. In the case
of the Employee Master table, these records are determined by the expression
MAS_REC_TYPE="M".

The File Details are entered as follows:

�� Description: type in the description you want for the file. This is only used
for information and is not available via any ODBC-enabled product. The
minimum entry must be an underscore, '_'.

�� Name: this is the physical name of the file and is picked up automatically by
the COBOL FD Converter, if available in the FD. For Single-tier U/SQL you can
click the Name... button to browse for the file and its directory.

�� Directory: this is the path of the physical file.

It is recommended that this is left 'blank'. In this case the filename will be
searched for down the Searchlist= directive. For Multiple-tier, this is set as a
U/SQL Server directive; For Single-tier, this set as an INI directive. See the
INI Directives section for further details.

Note: If you have already placed directory paths into various tables and want
to now remove them, then instead of using the U/SQL Manager to remove
each directory individually you can use the following SQL statement in the
Interactive U/SQL utilities, Win U/SQLi (on the client PC) or usqli (on the UNIX
server) to globally remove all directory paths:

Configure and Use

311

update cobol_table set pathid=0;

However, the Directory entry can be one of the following:

o The full path name to the directory where the file is located, for example,
/usr/datafiles (UNIX), C:\DATAFILES (Windows).

o The directory relative to where the U/SQL Server software resides. For
example, assume the UNIX based U/SQL Server is started in
/usr/usqls/bin and the data file is in /usr/datafiles, the relative path
is ../../datafiles.

Note: If the directory entries are of this type, there must be an entry of
'Directory=./' in the UNIX U/SQL Server configuration file, usqlsd.ini.

o The directory relative to the base directory where the data files are
located. For example under UNIX, if the base directory where the data files
are stored is /usr/datafiles and a particular data file is in the directory
/usr/datafiles/sales, then its relative path is sales.

Note: If the directory entries are of this type, there must be an entry of
'Directory=/usr/datafiles' in the UNIX U/SQL Server configuration file,
usqlsd.ini.

�� Organization: this is the organization of the file - Indexed, Relative,
Sequential, Line Sequential, Variable Sequential, Variable Relative or Variable
Indexed. Click the Combo box button to show the options.

The Record Details are entered as follows:

�� Length: this is the byte length of the record. It is determined by the COBOL
FD Converter ascertaining the field with the highest byte offset and adding
the size of the field.

Ensure the record length is the same as that in the physical file and that your
FD has not been truncated for any reason, for example, trailing FILLER has not
been specified. Use your COBOL utilities to check the actual record lengths. If
an FD has been truncated, the record length can be manually entered.

�� Min & Max Length: if the record is variable length, then you are able to
adjust both the Min Length and Max Length record lengths.

The Data Filter is entered as follows:

�� Expression: this is any record expression, which can be a maximum of 254
characters, that is used to distinguish between multiple record types in the
same physical file. The minimum entry must be an underscore, '_'. An
expression will normally be associated with multiple 01 records in the same
FD file: see the Multiple 01 Records section.

The Parsing Options are displayed:

�� For Micro Focus COBOL, you may have previously set the compiler directive
ODOSLIDE, indicating OCCURS Depending On Slide. ODOSLIDE affects data
items that appear after a variable-length table in the same record; that is,
after an item with an OCCURS DEPENDING ON clause but not subordinate to
it. With ODOSLIDE, these items always immediately follow the table,
whatever its current size; this means their addresses change as the table's
size changes.

For Micro Focus COBOL, you are able to define various Character Set settings:

�� ASCII, EBCDIC and Sign EBCDIC.

Multiple 01 Records

Transoft U/SQL User Guide

312

If there are multiple 01 records defined in the same physical file, each record
type is described as a separate logical table by the COBOL FD Converter. You
need to know how each record type can be uniquely distinguished from the
others. This is usually determined by one or more fields having particular values.
You must decide on the different names you wish to call each logical table and
establish the differentiating values or expressions. For further information, see
the sections Dealing with Multiple 01 Records and Expression Handling Syntax.

Configure and Use

313

Step 12: Write the Table Information to the Data Dictionary

After you are satisfied that you have set up the Data or field definitions, index
Keys definitions and File definitions for the table you have been working on, as
described in Step 9, Step 10 and Step 11 respectively, click the Close button.

Next, click the name of the table, for instance CUSTOMER, in the FD Tables list in
the COBOL FD Converter dialog box and click the Write button:

This writes the table to the UDD.

To write more than one table to the UDD, select the check box beside the tables
that you want to write and then click the Write Chosen button.

Transoft U/SQL User Guide

314

Step 13: Create Data, Key and File Information Manually

If you do not have a COBOL FD for a particular file, you can enter the Data, index
Keys and File information manually.

Click the Create... button on the COBOL FD Converter dialog box. The New
Table Name dialog box is displayed:

Enter the name of the table and click OK.

The Table Maintenance property sheet is displayed with 'blank' File, Data and
Keys property pages. Enter the information as described in Steps 9 to 12.

Configure and Use

315

Step 14: Repeat the Procedure for all your Application's Files

Perform steps 6 to 13, to set up all the tables in your UDD for all your
application's files. You can now close the dictionary using either:

�� The Close button, or

�� The icon (close book icon) on the tool bar

before finally exiting from the U/SQL Manager.

Transoft U/SQL User Guide

316

Next Steps

After completing the loading of your UDD:

�� If you wish to modify the UDD refer to the next section, Modifying a UDD,
otherwise;

�� For Single-tier U/SQL ensure that the U/SQL Client directives are set up.

�� For Multiple-tier U/SQL ensure that the U/SQL Server and Client directives
are set up.

�� At this point, you are ready to use U/SQL with your ODBC-enabled products
on your client platform.

Configure and Use

317

Modifying a UDD

Modifying a UDD

This section describes how you can view and modify an existing dictionary using
the U/SQL Manager.

It also describes how you can export your UDD and re-import. You may want to
perform this export/re-import process on your UDD:

�� to rev-up the UDD to the latest revision to obtain the benefit of possibly
improved performance, particularly for large dictionaries containing many
tables and columns, or to be able to specify more than 8 component parts in
any index, which was introduced in revision 2.66, or

�� to remove any inconsistencies or corruption in the UDD.

Transoft U/SQL User Guide

318

Open an Existing Data Dictionary

Windows

After you have set up a UDD, you can view, enhance or modify it at any time
using the U/SQL Manager.

Double-click on the U/SQL Manager icon in the U/SQL program group. The Main
Menu is displayed:

For Multiple-tier installations select the Remote Server command from the
Connection Options menu. For Single-tier installations select the Local Server
command from the Connection Options menu.

Either, click the Open Data Dictionary button from the Main Menu, or select the
Open... command from the File menu. The is Connect to Data Source dialog
box is displayed:

Configure and Use

319

Select an existing Data Dictionary from the list and click Open to display the list
of tables:

This dialog box allows you to perform the following functions:

�� Rename an Existing Table

�� Delete an Existing Table

�� View or Modify an Existing Table.

Transoft U/SQL User Guide

320

Rename an Existing Table

To rename an existing table, click the table name, for example, BUDGET, and
then click Rename:

The Rename dialog box is displayed:

Enter a new name for the table in the Enter Table Name field, then click OK.

Configure and Use

321

Delete an Existing Table

To delete an existing table, click the table name, for example, BUDGET, and then
click Delete:

The Delete Table dialog box is displayed:

To confirm that you want to delete the table, click OK.

Transoft U/SQL User Guide

322

View or Modify an Existing Table

To view or modify a table, highlight the Table and open it by either double-
clicking on it or by clicking the Open button:

The Table details are displayed:

You can now view or modify any of the Keys or File information as described
previously. However, for the Data information there is only one 'view' of it, as
follows:

Configure and Use

323

This Data Description layout is a combination of the two 'views' presented to you
by COBOL FD Converter. See the section Step 9: Manipulating the Data. The
columns are fully described in this section, but are summarized briefly below:

�� NO is the same as SEQ. You can change the sequence number of the fields
and then use the Sort button to re-sequence the field names. You can also
use the Renumber button to renumber the sequence numbers, in steps of
10.

�� NAME. The field (column) names must be SQL compliant. For assistance, you
can use the Check, Generate and Filter... facilities.

�� PIC, USAGE and SIGN. These denote the COBOL data type of each field.
Note that, if you click on USAGE or SIGN, a button appears and when
clicking on it, a menu appears of the available options.

�� OPTIONS. This column can contain a combination of "E", "N", "D" and "O"
indicating that an Expression, Null Values, Date or Occurs has been
defined for any field in the record. In addition, it can contain "V" indicating
that the field is a Virtual column. See the section below Adding a New
Column (Field). If you wish to declare any of these options for a particular
field, click the OPTIONS entry for that field and a button appears. Click the
button to display a sub-menu, which contains the following commands:

Expression...

Virtual...

Null Values...

Date...

Occurs...

�� OFFSET, LEN and DEC. These define the byte offset of the field, its length,
and the number of decimal places, respectively.

Adding a New Column (Field)

Only after you have used the COBOL FD Converter to create an initial view of a
table (record), can you add additional columns (fields). These can be 'real'
columns with the appropriate COBOL data types and byte offsets (for example,
because the FD used was an 'old' one and the actual record now has further

Transoft U/SQL User Guide

324

fields). They can also be 'virtual' columns that have a column expression added
that determines it value.

To add a new column or field to the table, click on the existing column name
above which the new column is to be inserted, for example, REGION, and click
the Insert button and the new column is created with a default name of FIELD1:

You click the NAME to change it and tab across each item in turn entering the
appropriate values.

A new column or field can be added to the end of the table by entering the details
in the 'blank' row automatically provided.

Note: Adding new fields or columns may affect the record length, which would
require changing in the File details. Refer to the section Step 11: File Details.

Virtual Field or Column

If you require a column that does not physically exist, but whose value is
determined by an expression, create a new column as above and then click the
OPTIONS entry for the new column. A button appears. Click the button, and
select the Virtual... command from the menu. The Virtual Field dialog box is
displayed:

You can add a column Expression in exactly the same way as adding one for a
'real' column; then click OK. Refer to the section Expressions on Columns and
Virtual Columns.

After adding the new columns to the table, click the Close button, and the details
are written back to the dictionary.

Deleting a Column (Field)

To remove a column (field) entry, click on it's NAME entry and then click the
Delete button, and it is deleted from the view.

Configure and Use

325

Exporting and Importing your UDD

You may want to perform this export/re-import process on your UDD:

�� to rev-up the UDD to the latest revision to obtain the benefit of possibly
improved performance, particularly for large dictionaries containing many
tables and columns, or to be able to specify more than 8 components in any
index, which was introduced in revision 2.66, or

�� to remove any inconsistencies or corruption in the UDD.

The export/re-import process can be achieved either using the client based
Interactive U/SQL utility, Win U/SQLi, or for Multiple-tier U/SQL Adapters with a
UNIX server via a script cobol_rebuild.sh.

Multiple-tier UNIX

For Multiple-tier U/SQL with a UNIX server your dictionary can be exported and
then re-imported automatically.

The script cobol_rebuild.sh, which is contained in the bin directory below the
U/SQL Server software installation directory, for example, /usr/usqlcs/bin is
responsible for the following:

�� backing up your specified UDD, for example, copying the dictionary
yourdict.udd into the sub-directory backup as yourdict.udd.18Apr1998.
Note that the date is added.

�� exporting the Universal File Dictionary (UFD) information to a text file, in this
case yourdict.txt.

�� creating a new dictionary, in this case yourdict.udd.

�� re-importing the textual UFD description, yourdict.txt.

�� updating the dictionary.

�� producing a list of tables which have failed to update due to inconsistent
information within them.

�� producing a file of successful and unsuccessful updates, in this case
yourdict.log.

Here is an example:

$ cobol_rebuild.sh yourdict.udd
Backing up data dictionary yourdict.udd to

backup/yourdict.udd.18Apr1998...
Exporting UFD tables...
Creating blank data dictionary...

Importing UFD tables...
Updating data dictionary...
Finished.

It is also possible to export your UDD to a UFD textual file, using the script
cobol_export.sh, for example:

cobol_export.sh yourdict.udd yourdict.txt

You may want to amend the text file, for example, to remove some tables, before
using use the script, cobol_import.sh, to re-import your UDD. But first you
must create a new empty UDD, say, newdict.udd, using the Interactive U/SQL
Utility, usqli, with the -c switch. For example:

usqli -c newdict.udd

cobol_import.sh newdict.udd yourdict.txt

Transoft U/SQL User Guide

326

Then you must then invoke usqli with the -u switch to update the internals of the
dictionary with the information from the imported text file. For example:

usqli -u newdict.udd

Finally, you are now able to use this newdict.udd.

Note: Great care must be exercised in amending the exported text file. Refer to
the next section, Manually Creating a COBOL UDD to understand the contents of
this text file.

Configure and Use

327

Next Steps

After completing the loading of the UDD:

�� For Single-tier U/SQL ensure that the U/SQL Client directives are set up.

�� For Multiple-tier U/SQL ensure that the U/SQL Server and Client directives
are set up.

�� At this point, you are ready to use U/SQL with your ODBC-enabled products
on your client platform.

Transoft U/SQL User Guide

328

U/SQL Manager Error Messages

When you use the U/SQL Manager there are various messages that may be
displayed. These messages fall into the following categories:

�� ODBC error messages

�� UDD error messages

�� Table and column names error messages

�� COBOL FD Converter error messages.

The following tables detail these error messages and the possible reasons.

ODBC Error Messages

ODBC Error

Messages

Possible Problem

"Invalid Port Number: "

"Invalid Host Name: "

Multiple-tier only.

U/SQL Server not started

Incorrect ODBC.INI directive.

UDD Error Messages

UDD Error Messages Possible Problem

"Cannot read this INI file in
your Windows directory."

ODBC.INI cannot be read

Cannot find ODBC.INI file

ODBC.INI is read only

"Could not create Data
Dictionary."

Creating UDD

Multiple-tier. Cannot connect to U/SQL Server
or it is not running.

"An entry for this Data
Dictionary already exists in
your ODBC.INI file."

Creating a UDD

Name already exists. If you continue, the
existing entry will be overwritten.

"The U/SQL Adapters
Manager does not support
any of the Data Sources
that your U/SQL Server
supports."

Opening UDD

Mismatch between contents of UDD and the
U/SQL Data Source Driver you are running.

"The local USQL.MDB
database appears to be
corrupt. Will attempt to

Opening UDD

Your PC has crashed previously. The Manager

Configure and Use

329

repair and try again." will attempt to repair automatically the local
USQL.MDB database.

"The attempt to repair the
local USQL.MDB database
failed. Aborting."

Opening UDD

The Manager could not repair USQL.MDB. Copy
USQLBAK.MDB to USQL.MDB. These files are in
the LOCALDB sub-directory of the U/SQL
Manager installation directory. No loss of UDD
data is incurred.

"Error while opening the
local information database."

"Error while closing the local
information database."

Opening UDD

Local USQL.MDB database corrupt due to, say,
PC crash. Copy USQLBAK.MDB to USQL.MDB.
These files are in the LOCALDB sub-directory of
the U/SQL Manager installation directory. No
loss of UDD data is incurred.

"The following table has a
duplicate definition:"

Opening UDD

UDD possibly corrupt. Retrieve last valid
backup.

"Unable to update Data
Dictionary for table:"

Updating UDD

Invalid data in table definition. Check field
names and key fields are valid.

"Could not add new field to
table:"

"Could not add new key to
table: "

Insert Field or Key - Updating UDD Table

Corrupt UDD. Retrieve last valid backup.

Multiple-tier. Cannot connect to U/SQL Server
or it is not running.

"This Table Name cannot be
used in the Data Dictionary
because:"

"This Field Name cannot be
used in the Data Dictionary
because:"

Non-compliant names

See Table and Column Names Error Messages
below.

"Some of the Field names
will be rejected by the Data
Dictionary."

Writing Table to UDD

Illegal field names. Use Check button to view
illegal names and alter them.

"Group fields cannot be
written to the Data
Dictionary."

Elementary fields

Only elementary fields can be written to the
UDD.

"The Record Number field
must be written to the Data
Dictionary for Relative
files."

Record Number

The Record Number must be included for
Relative files (tables).

"Could not delete Data
Dictionary"

Deleting UDD

The UDD does not exist

Multiple-tier. Cannot connect to U/SQL Server

Transoft U/SQL User Guide

330

or it is not running.

Table and column names error messages

Table and column

names Error Messages

Possible Problem

"The name is too long."

"The name is an SQL
keyword."

"The first character of the
name is illegal."

"The name contains an
illegal character."

"The name is blank."

Refer to the section Structure View for SQL
naming compliance.

COBOL FD Converter Error Messages

COBOL FD Converter

Error Messages

Possible Problem

"No such source file." COBOL source file cannot be found. Invalid
path or name.

"No such copy file." Copyfile referenced in FD cannot be found.
Check file exists or check copyfile path.

"Too many nested COPY
statements."

The limit is 10 levels of nesting.

"Tried to find a non-existent
field."

"Key field defined does not
exist."

"No parts found for a split
Key."

Invalid COBOL FD code. Check code with your
COBOL compiler.

"Cannot find an FD for this
file. Try changing the
Source File Options that are
available from the Options
button on the FD
Converter."

"No fields found in this FD.

Try a different file format option, for example,
Fixed or Free and click Convert again.

If message persists check code with your
COBOL compiler.

Configure and Use

331

Try changing the Source File
Options that are available
from the Options button on
the FD Converter and then
re-Converting the Source
File."

"Invalid/unprocessable
PICTURE clause."

"Can't find any SELECT or
FD statements in this file.
Try changing the Source File
Options that are available
from the Options button on
the FD Converter."

"Cannot convert Field
definitions. Try changing the
Source File Options that are
available from the Options
button on the FD Converter
and then re-Converting the
Source File."

"Unable to determine source
file format."

"Cannot convert this file.
The file may not be a valid
Cobol Source File, or it may
be corrupt."

"Invalid field definition
encountered. Try changing
the Source File Options that
are available from the
Options button on the FD
Converter."

"Too many words in a single
COBOL scope (maximum
250). It may be either a
very large comment in the
COBOL Program or you have
chosen the wrong Source
File Format. Either delete
the comment or try
changing Source File
Formats."

The Cobol FD Converter has a limit of 250
words in a single scope. Edit FD source
manually.

" Please check the Key
Definitions for this table.
Either the Key fields do not
exist, or the FD Converter
was unable to determine
them for you automatically."

Illegal or unknown Key fields have been
defined.

"Please enter a file name." No file name has been entered.

Transoft U/SQL User Guide

332

"An FD table called " "
already exists. Please supply
a new table name."

Rename to a unique name.

Configure and Use

333

Manually Creating a COBOL UDD

Manually Creating a COBOL UDD

This section describes how the dictionary can be built by detailing the layout of
the application's data files in a text file from which the UDD is created. Use this
approach if you want to generate a dictionary from your COBOL application
automatically (say, from data stored in a case tool) or where the data uses
COBOL data types in, say, C-ISAM as the data source, but where there are no
COBOL FDs.

This is applicable to both Single and Multiple-tier U/SQL.

Introduction

You define the contents of your COBOL data dictionary by specifying three SQL
tables, cobol_table, cobol_field and cobol_index, that hold details of your
files, their fields and indexes in a text file.

You then create an empty dictionary and import into it the contents of this text
file creating the Universal File Dictionary (UFD), that is the details of the physical
files. The Universal Data Dictionary (UDD) is automatically created from the UFD
information. The UDD contains details of the 'relational' tables and their column
names that are visible to ODBC-enabled products.

Note: The layout of the text file is the same as the textural form of an exported
dictionary that was originally created using the U/SQL Manager.

Transoft U/SQL User Guide

334

Defining a COBOL Data Dictionary

Create a Text File

The data dictionary is specified by creating a text file, for example,
dictionaryname.ufd. It consists of three sections, each of which relates to a
table in the UFD; cobol_table, cobol_field and cobol_index. Each table is
specified as an entity, and a table type can be repeated as any number of entities
in the text file. A table entity consists of the following:

table_name1(colname_1,colname_2,...)

----- ----- -----
R1C1 R1C2 R1C3
R2C1 R2C2 R2C3

Comment.
R3C1 R3C2 R3C3
*

�� The first line contains the name of the table followed by the names of the
columns delimited by commas and enclosed in parentheses.

�� The next line contains a template which describes the position and
maximum length of the data for each column. The format of this template
is one or more groups of dashes, where the position and length of each
group specifies the location and maximum length of the following data.
The amount of white space between the groups of dashes is not
significant.

�� There then follows one or more rows of data to be inserted into the UFD
table. The row data must match the positions specified in the template.

'#' in the first column of a line marks the beginning of a comment.

'\' in the last column of a line signifies it continues on the next line.

Separate tables are delimited by an asterisk '*' in the first column on a line.

Comma Delimited UFD File

Some of the lines in the UFD text file can become very long, particularly if many
index key components are required, making it difficult to manipulate . To
overcome this a comma delimited form of the UFD file can be specified.

This is achieved by removing the template and specifying each field item for each
row of data separated by commas. String values must be enclosed in double
quotes, ".

The special characters still apply; '#', comments character, '\' continuation
character and '*' end of table character.

An example table:

table_name1(colname_1,colname_2,...)
R1C1,"R1C2",R1C3

12345,"Joe Smith",5678.76
Comment.
R3C1,"R3C2",R3C3
*

You will need to perform the following steps to create tables to specify your
COBOL data files and their structure:

�� Step 1: Define Datatables

�� Step 2: Define Fields (Columns)

Configure and Use

335

�� Step 3: Define the Indexes.

Transoft U/SQL User Guide

336

Step 1: Define Datatables

The UFD table cobol_table defines all the table names that are visible to an
ODBC-enabled product and their equivalent physical file names. The following
example shows the contents of this UFD table:

cobol_table(tabname, filename, pathid, filedesc, reclen, maxreclen,
minreclen, nfields, nindices, filetype, compflags, arrays,
recordexpr,
revision, comptype, recexpr)

--------- -------- - ------------- -- -- -- -- -- -- - - - - - -
STOCK stock 0 Stock File 82 82 82 7 1 41 0 0 _ 2 1 _
CUSTOMER customer 0 Customer File 40 40 40 3 1 41 0 0 _ 2 1 _
*

where:

cobol_table is the internal UFD table name

and the columns are:

Column Data

Type

Description

tabname char (32) The SQL table name, that is, the name that is
visible to ODBC-enabled products. This name must
be SQL compliant and satisfy the following
conditions. It must be:

�� in UPPERCASE

�� within 18 characters

�� unique

�� not an SQL keyword

�� not zero length

�� made up of 0-9, A-Z, _, with the first
character alphabetic and with no blanks.

filename char(128) The physical diskfile name. On UNIX, the filename
is case sensitive.

pathid smallint The directory path number to the physical file. It is
recommended that this is set to zero and that the
SearchList directive is used to determine the
location of all data files.

filedesc char(40) A description of the tabname.

reclen integer If fixed length record, the record length. If not
fixed length set to zero.

maxreclen integer If variable length record, the maximum record
length. If fixed length set to zero.

minreclen integer If variable length record, the minimum record
length. If fixed length set to zero.

Configure and Use

337

nfields smallint The number of fields in the record. Maximum 512.

nindices smallint The number of indexes defined on the table.

filetype smallint The type of the file, which can have the following
values:

41 - Indexed
42 - Relative
43 - Sequential
44 - Line Sequential
45 - Variable Sequential
46 - Variable Relative
47 - Variable Indexed

compflags integer Bit field containing compiler directives in force on
the data file.

Acucobol Flags

1 - D1
2 - Dm
4 - D5
8 - D6
16 - Di
32 - Ci
64 - Dca
4096 - Dci
8192 - Df

Micro Focus Flags

256 - ODOSLIDE
1024 - EBCDIC
2048 - EBCDIC SIGN

arrays smallint Set to 1 if the table contains one or more arrays,
otherwise 0 (zero).

recordexpr char (64) No longer used.

revision smallint The revision of the UDD. Used internally.

comptype smallint No longer used.

recexpr char(254) Conditional test to establish if a record belongs to
table. (This is an expression which can be a
maximum of 254 characters and as a minimum
there must be an '_' entry). See the section
Multiple Record Type Handling below.

Multiple Record Type Handling

If there are multiple records defined in the same physical file, each record type
can be described as a separate logical table. You need to know how each record
type can be uniquely distinguished from the others. This is usually determined by

Transoft U/SQL User Guide

338

one or more fields having particular values. You must decide on the different
names you wish to call each logical table and establish the differentiating values
or expressions. For further information, see the section Dealing with Multiple 01
Records.

An example expression is:

REC_TYPE="P"

Configure and Use

339

Step 2: Define Fields (Columns)

The UFD table cobol_field defines all the field (column) names that are visible to
ODBC-enabled product and their physical attributes. The following example shows
the contents of this UFD table.

cobol_field (tabname, fldname, cobolname, flddesc, sequenceno, type,
usage, signed, len, offset, ndec, picture, levelno, numdigits,
dateformat,
fieldflags, arraylevname, arraylevel, nullvalue, colassignexpr,
scaling)

----- ---------- - - -- - -- - -- -- - ----- - - - - - - - - -----
STOCK STKNUM _ _ 30 2 10 0 6 0 0 X(6) 5 0 _ 1 _ 0 _ _ NULL
STOCK TOCK_TITLE _ _ 40 2 10 0 30 6 0 X(30) 3 0 _ 1 _ 0 _ _ NULL

STOCK PUBLISHER _ _ 50 2 10 0 10 36 0 X(10) 3 0 _ 1 _ 0 _ _ NULL
*

where:

cobol_field is the internal UFD table

and the columns are:

Column Data

Type

Description

tabname char(32) The SQL table name, that is, the name that is
visible to ODBC-enabled products. It is the
same name as in cobol_table.

Fldname char(32) The field (column) name that is visible to
ODBC-enabled products. This name must be
SQL compliant and satisfy the following
conditions. It must be:

�� usually within the SQL standard of 18
characters, but can be a maximum of 30
characters.

�� unique

�� not an SQL keyword

�� not zero length

�� made up of 0-9, A-Z, a-z, _, with the
first character alphabetic and with no
blanks.

cobolname char(32) The COBOL field name.

flddesc char(40) A field description.

sequenceno smallint The sequence number of the field. The first
field is set to 10 and then increments in steps
of 10 (in case new fields need to be inserted).

type smallint The data type, which can be:

1 - Alpha

Transoft U/SQL User Guide

340

2 - Alphanumeric
3 - Numeric

usage smallint The usage type of the field, which can contain
the following values:

10 - DISPLAY
11 - BINARY
12 - COMP
13 - COMP-1
14 - COMP-2
15 - COMP-4
16 - COMP-5
17 - COMP-6 BCD
18 - COMP-X
19 - COMP-N
20 - PACKED-DECIMAL
21 - COMP-3
22 - INDEX
23 - COMP-0
24 - PIC-E
25 - COMP-6 BINARY
26 - FLOAT
27 - DOUBLE
28 - Acu COMP-1
29 - Acu COMP-2
36 - Packed integer

signed smallint Sign type, which can have the following values:

30 - Leading
31 - Trailing
32 - Leading separate
33 - Trailing separate
34 - Unsigned
35 - Signed

len integer The length in bytes of the field (column).

The maximum SQL string data type is 254
bytes. Split fields (columns) greater than this
maximum into multiple columns.

offset integer The offset within the record from byte zero.

ndec smallint The number of decimal places (if applicable).

picture char(30) The COBOL picture string for the field.

levelno smallint The level number of the field, for example, 01,
03 and so on.

numdigits smallint The number of digits in the field.

dateformat char(30) The date format if the field is to be defined as a
date. This can hold either a Date Format

Configure and Use

341

String or a Julian Date Offset, where 1 is 1
January 0001. For example, a data format
string could be MMDDYYYY and a Julian date
offset for 1 January 1968 is 718432. Leave
blank if not a date. See the section SQL Date
Formats.

fieldflags integer A bit field that contains attributes for the field:

1 - field used flag (if not set, entry in
cobol_field table will not be used).

2 - documentary - used by the U/SQL Manager
to identify a group field.

4 - documentary - used to identify an entry for
an array header.

8 - field used as an array subscript.

16 - field is a member of an array element.

32 - documentary - used to identify individual
array field by U/SQL Manager.

64 - field is used to return record number.

128 - documentary - identify field that controls
OCCURS DEPENDING ON.

256 - virtual column.

512 - documentary - identifies subscript for
parallel array processing.

1024 - field has expression to define logical
null.

2048 - Hidden field. Refer to the section Hidden
Fields, below.

The bits that are marked as 'documentary' are
used by the U/SQL Manager when processing
the cobol_field table. It is desirable, but not
essential, to set these bits when creating the
UDD from a UFD text file.

This field must never contain zero, as a
minimum it should be 1.

Arraylevname char(18) The array level name of field if part of the
array.

arraylevel smallint The array level number of field if part of the
array.

nullvalue char(64) An expression that gives the NULL value for a
column.

Colassignexpr char(254) An expression that changes the value of the
column. Refer to the section Expressions on
Columns and Virtual Columns.

Scaling smallint Reserved for future use.

Transoft U/SQL User Guide

342

Hidden Fields

Setting bit 12 of fieldflags (decimal 2048) in the cobol_field table results in the
column being hidden from the user. The column can still be queried and, if
applicable, can be used by the query planner for optimum performance.

Hidden fields cannot currently be set by the U/SQL Manager.

Note: As well as setting bit 12 one other bit needs to be set to produce a valid
configuration. Hence, fieldflags usually have a value of 2049, that is bit 12 and
bit 1 are set.

Data Redundancy in Alternate Keys

Assuming the following example:

01 MAIN-REC.
 05 KEY1.

 10 CUST1 PIC X(8).
 10 REGION1 PIC 99.
 05 KEY2.

 10 REGION2 PIC 99.
 10 CUST2 PIC X(8).
 05 MAIN-DATA.

There is a duplication of data for the fields for cust code, and region.

If the fields of the alternate key (REGION2, and CUST2) are hidden (see above
section) and the user chooses to select using the visible region field (REGION1)
then the WHERE clause will not reference the second region field and hence will
not allow the U/SQL Server engine to use the alternate index (the same applies
for an ORDER BY clause).

However if a record expression (refer to the section Expression Handling Syntax)
is applied to the table as follows:

CUST2 = CUST1 and REGION2=REGION1

then this will be propagated into the WHERE clause on each SELECT and the
syllogistic reasoning of the query planner will transform

REGION1='XXX' AND REGION2=REGION1

into

REGION1='XXX' and REGION2=REGION1 and REGION2='XXX'

and hence use the alternate index for this access.

This could be extended for any number of occurrences, for instance:

CUST2 = CUST1 and REGION2=REGION1 and CUST3 = CUST1 and
REGION3=REGION1

The syllogistic reasoning is undertaken for both WHERE and ORDER BY clauses.

Configure and Use

343

Step 3: Define the Indexes

The UFD table cobol_index defines all the indexes associated with each
tabname declared in the table, cobol_table. The following example shows the
contents of the cobol_index UFD table.

cobol_index (tabname, idxname, idxno, duplicates, fld1,
fld2, fld3, …… fld64)
-------- ---------- -- --- ---------- ---- ---- -----
STOCK STOCKK0 0 101 STKNUM - - -

CUSTOMER CUSTOMERK0 0 101 CUST_CODE - - -
*

where:

cobol_index is the internal UFD table

and the columns are:

Column Data

Type

Description

tabname char(32) The SQL table name that this index is for. It is the
same name as in cobol_table.

Idxname char(32) The index name.

indno smallint The sequence number of the index within the file.

duplicates smallint 101 - index is unique.

100 - duplicate indexes allowed.

fld1 char(32) The first field in the key.

fld64 Up to 64 fields are permissible in the key. You only
need specify, in the template, as many index fields
as are used.

Transoft U/SQL User Guide

344

Creating the UDD from the UFD Text File

You create your UDD, either using:

�� The Windows Interactive U/SQL utility, Win U/SQLi, on a client PC, or

�� On the server for UNIX platforms, using the Interactive U/SQL utility, usqli.

Single-tier or Multiple-tier

When you have created the text file defining the UFD structure of your COBOL
files, for example demo.ufd, you use the U/SQL Client software version of the
Interactive U/SQL utility, Win U/SQLi, to create your UDD:

1. For Multiple-tier U/SQL ensure that the U/SQL Server is running on your
UNIX or Windows NT Server machine.

2. Invoke Win U/SQLi, by double-clicking the Win USQLi icon in the U/SQL
Client program group, on the client PC where you have created the UFD
text file, for example, demo.ufd.

3. Create a new UDD, for example, demo.udd, to which the UFD text file will
be imported, by either clicking on the Create a new UDD icon from the
toolbar, or selecting New UDD from the File menu. Select where you
want the UDD to be created, that is Local for Single-tier or Remote for
Multiple-tier.

You will then set up the ODBC.INI directives.

4. Click the Import Tables icon or select Import from the Table menu.
Select the UFD text file you have created, in this example, demo.ufd.

5. An Import Tables dialog box is displayed, showing each table as it is
imported. Each successfully imported table has 'Imported' displayed to the
left of the table name.

6. After all the tables have been imported, click OK

7. Click the Update selected tables icon, or select Update from the Tables
menu. Select the appropriate data source from the dialog, and click the
Update button. This creates the UDD tables from the UFD tables.

8. The message, All tables successfully updated, is displayed.

There are conditions where you do not get this message, for example, due
to a missing key component in an index. Interrogate the log file to obtain
which table has the problem and what it is. Refer to the section How to
Query the Log File.

9. Click OK.

10. You can check that the new UDD is correct by performing one or more
queries on it using Win U/SQLi.

You have now created and populated your UDD.

Note: Ensure you perform the update step (7), otherwise the UDD is left in an
incomplete state and is unusable.

Multiple-tier with UNIX Server

UNIX

Configure and Use

345

On Multiple-tier UNIX platforms, once you have created the text file containing
the entries defining the UFD structure of your COBOL data files, for example,
demo.ufd, you must go through a three-step process to create the UDD:

1. In the bin directory below the base directory where you loaded the U/SQL
Server software, for example, /usr/usqls/bin, create an empty UDD, for
instance, demo.udd, by running the Interactive U/SQL utility usqli, with
the -c switch:

cd /usr/usqls/bin

./usqli -c demo.udd

Note: The dictionary must have a '.udd' extension.

2. Next, you must load your UFD data, demo.ufd, into the UDD. This is
achieved by running usqli again with just the name of the UDD:

./usqli demo.udd

and then, at the 'U/SQL' prompt:

U/SQL> import demo.ufd

U/SQL> quit

3. Finally, you must create the UDD, from the UFD information, by running
usqli with the -u switch:

./usqli -u demo.udd

The message, All tables successfully updated, is displayed.

There are conditions where you do not get this message, for example, due
to a missing key component in an index. Interrogate the log file to obtain
which table has the problem and what it is. Refer to the section How to
Query the Log File.

You can update one table at a time:

./usqli -u demo.udd AREAS

./usqli -u demo.udd COUNTIES

./usqli -u demo.udd CUSTOMERS

The UDD, demo.udd, is now ready for use.

To list the tables just loaded into the UDD, run usqli:

./usqli demo.udd

and then, at the 'U/SQL' prompt:

U/SQL> select tabname from cobol_table;
.

. [tabname table names listed]

.
U/SQL> quit

Note: Ensure you perform the update step (3), otherwise the UDD is left in an
incomplete state and is unusable.

Transoft U/SQL User Guide

346

Amending the Data Dictionary

If any amendments are required then either:

�� The existing UDD must be deleted, the relevant changes made to the '.ufd'
text file and the steps repeated, in the previous section, to create and load
the new UDD, or

�� A new data file can have a '.ufd' text file made for it and the steps to import
and update the UDD repeated.

Note: If any table requires amending, it is recommended that you recreate the
whole dictionary to ensure a consistent UDD.

Configure and Use

347

Next Steps

After completing the loading of the UDD:

�� For Single-tier U/SQL ensure that the U/SQL Client directives are set up.

�� For Multiple-tier U/SQL ensure that the U/SQL Server and Client directives
are set up.

�� At this point, you are ready to use U/SQL with your ODBC-enabled products
on your client platform.

Transoft U/SQL User Guide

348

COBOL Issues

There are various issues that must be considered when using U/SQL with an
ACUCOBOL or Micro Focus COBOL data source:

�� COBOL PIC 9(16), PIC 9(17) and PIC 9(18) data types

U/SQL data sources that support COBOL data types do not support the full
range of values held in PIC 9(16) or greater data types. This restriction
includes all computational storage options.

�� Variable length records are restricted to read-only. Review NULL mapping of
columns in the variable portion of the record.

If your COBOL FDs qualify data names in the specification of any index, then the
U/SQL Manager may not correctly identify these key fields. It is extremely
important to check that entries for each index contain all the key components in
the correct order.

This section discusses the following specific issues:

�� Multi-Byte NULL Expressions for COBOL data types

�� Support of ACUCOBOL Vision 4 data files

�� Micro Focus COBOL Issues

�� Support for Micro Focus COBOL Fileshare under UNIX

�� Support for Micro Focus COBOL Fileshare under Windows.

Multi-Byte NULL Expressions for COBOL data types

In revisions of U/SQL prior to Rev 3.10, a NULL expression required a single byte
to be repeated throughout the entire field, for the field to be considered NULL. In
U/SQL Rev 3.10 and above the NULL expression has been modified to also allow
you to enter a sequence of bytes as a pattern that must be matched in the field
for it to be considered NULL. You can enter this pattern in any combination of the
three formats previously supported, but with the following extensions:

�� When the value is in quotation marks, you can specify more than one
character inside the quotes. For example, "WEST!".

�� Using the hexadecimal representation of ASCII, this same pattern is
x57x45x53x54x21

�� In the decimal representation of ASCII, this is 087069083084033

You can use combinations of these three formats. For example:

087"EST"x21: combines the decimal representation of ASCII, printable ASCII and
hexadecimal.

The resulting patterns are matched against the actual COBOL field.

If you define the NULL expression as a series of bytes, for example, "EAST" then
the pattern EAST must be repeated throughout the field. Therefore, given a NULL
expression defined as "EAST", a 9 byte field must contain "EASTEASTE" to be
considered NULL.

Support of ACUCOBOL Vision 4 data files

The ACUCOBOL Data Source Driver supports Vision 4 data files.

Configure and Use

349

ACUCOBOL Vision 4 is backwardly compatible with Vision version 2 and 3 file
formats. Therefore all U/SQL Rev 3.10 ACUCOBOL products will only be available
with a Vision 4 file handler.

Micro Focus COBOL Issues

�� The combination of IBMCOMP and SYNCHRONIZED directives is not
supported.

�� The file handler supports record and key compression.

�� Micro Focus only fully support their COBOL on Windows NT Server 4 or
Windows 2000. If you use Windows NT Server 3.51, then do not logout of the
NT console.

�� You must have a Micro Focus COBOL runtime to operate Multiple-tier U/SQL.

�� Under Multiple-tier UNIX platforms, to ensure locking works consistently, set
up the correct environment variables when using Micro Focus COBOL V3.0 or
V3.1.

Support for Micro Focus COBOL Fileshare under UNIX

Note: The information below is based upon U/SQL accessing Object COBOL
Developer's Suite 4.1.xx and Server Express v1.xx and above. This is not a
definitive guide and reflects usage which is consistent with runtime versions
available at the time of writing (consult your Micro Focus documentation for
complete instructions on Fileshare usage and configuration).

As a pre-requisite you need to ensure CCITCP is running. If not change directory
into the $COBDIR directory and start, as root, the ccticp2 process (start this as
a background job available to your Fileshare server so that it can be referenced
through more than one terminal session).

Set the two Fileshare directives in your usqlsd.ini file as follows:

[books.udd]

Dictionary=../example/books.udd
Directory=../example
AutoTransProc=Y

go into the directory where

File Share=Y the datafiles are and, where appropriate, create a database

reference file*: This will tell the Fileshare server which datafiles should be made
available for Transaction Processing.

vi books.ref

/f budget

/f customer
/f orders
/f oline
/f salehist

/f stock

Save this '.ref' file in the directory where the datafiles are and set the Fileshare
environment variables:

$ export FSSERVER=MyFileShareServerName1

$ export FSCOMMS=CCITCP

Transoft U/SQL User Guide

350

Start Fileshare using the parameters below (refer to your Micro Focus
documentation for alternative methods or clarification on command line
parameters):

$COBDIR/fs -s MyFileShareServerName1 -d books.ref -cm ccitcp -tr f

Note: Enable File Share tracing by pressing F2. This will allow you to see
transactions taking place and will give visual confirmation that U/SQL is
communicating with your Fileshare server process.

Once you have started and configured all elements relating to your Fileshare
environment start your U/SQL server and access a usqli session.

At the U/SQL> prompt switch transaction mode on:

U/SQL> transaction mode on

You can then test whether Fileshare and U\SQL are communicating by following
the examples below:

U/SQL> select * from customer where custcode >='C020';

CUSTCODE CUST_NAME CUST_REGION

C021 Tonys Book4 WEST
C022 Tonys Book5 WEST
C023 Tonys Book6 WEST
C024 Tonys Book7 WEST

C025 Tonys Book5 WEST
5 records retrieved

U/SQL> delete from customer where custcode < 'C023';

U/SQL> select * from customer where custcode >='C020';

CUSTCODE CUST_NAME CUST_REGION
C023 Tonys Book6 WEST
C024 Tonys Book7 WEST
C025 Tonys Book5 WEST
3 records retrieved

U/SQL> rollback

U/SQL> select * from customer where custcode >='C020';

CUSTCODE CUST_NAME CUST_REGION

C021 Tonys Book4 WEST
C022 Tonys Book5 WEST
C023 Tonys Book6 WEST
C024 Tonys Book7 WEST

C025 Tonys Book5 WEST
5 records retrieved

U/SQL>

* If the data files reside in MORE than one Directory then amend the .ref file like
so

/f budget

/f customer01 /af test/customer01

/f orders

/f oline

/f salehist

/f stock

Configure and Use

351

The /f datafile entry points to the current working directory where the data (and
.ref) resides. The use of the alternative file /af switch tells the Fileshare server to
look for the relevant datafile in the base and alternative directories.

Note: Fileshare will work with substitution as it is U/SQL that handles this.

Support for Micro Focus COBOL Fileshare under Windows

Due to potential implementation differences on various Windows platforms refer
to your Micro Focus documentation regarding the configuration and use of
Fileshare on non-UNIX Operating Systems.

Linking external file handlers

Since U/SQL makes use of the standard Micro Focus EXTFH file handler, the C-
ISAM library can be linked into U/SQL in the same way it would be linked into a
Micro Focus COBOL runtime system.

The makefile shipped with the U/SQL release will need to have the entry:

COBLIB= cobol.a

modified to:

COBLIB= cobol.a -m ixfile=cixfile -L/usr/lib +lisam

where /usr/lib is the UNIX directory containing the C-ISAM library libisam.a.

This mechanism is described in detail in the Micro Focus reference manual under
the 'Callable File Handler' section. This facility does not apply when the standard
Micro Focus file system is used.

U/SQL requires the directive MFIsam=N to be included in the usqlsd.ini
configuration file.

Transoft U/SQL User Guide

352

Setting Up a C-ISAM Data Dictionary

Setting Up a C-ISAM Data Dictionary

This section describes setting up a UDD for C-ISAM based data and specifically
the data types for Cognos PowerHouse C-ISAM.

Note: Refer to the Overview and Creating a UDD sections for an overview of the
dictionary technology and the steps involved in creating a UDD.

Introduction

The U/SQL Server supports a data source driver for C-ISAM covering differing
data types. Although C-ISAM, as supplied by Informix, defined a limited number
of ‘C’ data types, many languages and applications make use of C-ISAM as their
data source each of which has its own data types, for example, dates are typically
held in proprietary formats. Your particular version of C-ISAM will only use a
subset of the full range of data types available. These data types are
automatically converted by the U/SQL C-ISAM Data Source Driver into ODBC-
compliant data types during run-time.

U/SQL provides both read and write capability, via ODBC-enabled SQL based
products, to your existing C-ISAM data files, assuming that you are not restricted
to read only, either by Licensing or via the U/SQL Server configuration directive.

The first step is to define the contents of your data dictionary. You specify three
SQL tables, cisam_table, cisam_field and cisam_index, that hold details of
your existing files, their fields and indexes.

All this information is contained in the Universal File Dictionary (UFD). The
Universal Data Dictionary (UDD) is automatically created from the UFD. The UDD
contains details of the 'relational' tables and their column names that ODBC-
enabled products will 'see'.

Configure and Use

353

Defining a C-ISAM Data Dictionary

Create a Text File

The data dictionary is specified by creating a text file, for example,
dictionaryname.ufd. It consists of three sections, each of which relates to a
table in the UFD:

�� cisam_table

�� cisam_field

�� cisam_index.

Refer to the Creating a UDD section for how the UFD text file is formatted.

The following steps must be performed to create tables to specify your C-ISAM
data files and their structure:

�� Step 1: Define the Data Files

�� Step 2: Define the Fields (Columns)

�� Step 3: Define the Indexes.

Step 1: Define the Data Files

The UFD table cisam_table defines all the table names that an ODBC-enabled
product will ‘see’ and their equivalent physical file names. The following example
shows the contents of this UFD table:

cisam_table(tabname,reclen,data_file,recexpr)

------------ ---- ------------- -----------------------

AREA 24 AREADATA

COUNTY 24 COUNTYDATA

CUSTOMER 216 CUSTMAST

*

where:

cisam_table is the internal UFD table name

and the columns are:

Column Description

tabname The SQL table name, that is, the name the ODBC-enabled
products will ‘see’. This name must be SQL compliant and satisfy
the following conditions. It must be:

�� in UPPERCASE

�� within 18 characters

�� unique

�� not an SQL keyword

�� not zero length

Transoft U/SQL User Guide

354

�� made up of 0-9, A-Z, _, with the first character
alphabetic and with no blanks.

reclen The record length.

data_file The physical diskfile name, without any '.dat' or '.idx' extension.

recexpr Conditional test to establish if a record belongs to the tabname

table. (This is an expression which can be a maximum of 250
characters). See the Multiple Record Type Handling section
below.

Note: Two further columns, nfield and nindex, are automatically generated in
cisam_table.

Multiple Record Type Handling

The recexpr column in the cisam_table can contain a condition or expression.
Only records that satisfy the condition or expression will be included in the table.
The syntax of the conditional expression is exactly the same as that for an SQL
WHERE clause search-condition (see the Expression Handling section) and refers
to columns in the table.

For example, assume the file TRANSMAST contains two record types,
INVOICES and PAYMENTS. They are distinguished by INVOICES having the
field (column) TYPE=1 and PAYMENTS having TYPE=2 AND CREDIT=“Y”. You
could therefore define three tables called, say, TRANSACTION, INVOICE and
PAYMENT, which will be ‘seen’ to contain all transactions, just invoices and just
payments respectively, when viewed by an ODBC-enabled product. The entries in
the cisam_table are:

cisam_table(tabname,reclen,data_file,recexpr)

------------ ---- ------------- -----------------------

TRANSACTION 70 TRANSMAST

INVOICE 70 TRANSMAST TYPE=1

PAYMENT 70 TRANSMAST TYPE=2 AND CREDIT=“Y”

*

Step 2: Define the Fields (Columns)

The UFD table cisam_field defines all the field (column) names that an ODBC-
enabled product will ‘see’ and their physical attributes. The following example
shows the contents of this UFD table:

cisam_field(tabname,fldname,type,length,offset,ndec)

---------- ------------- ------- --- ---- ---
AREA AREA_CODE long 4 0 0
AREA AREA_DESC char 20 4 0

COUNTY COUNTY_CODE long 4 0 0
COUNTY COUNTY_DESC char 20 4 0
CUSTOMER CUST_CODE long 4 0 0
CUSTOMER CUST_ADDR char 80 4 0

CUSTOMER CUST_AREA long 4 84 0
CUSTOMER CUST_REP long 4 88 0
CUSTOMER CUST_COUNTY long 4 92 0

Configure and Use

355

CUSTOMER CUR_BALANCE decimal 8 96 2
CUSTOMER BUD_BALANCE decimal 8 104 2

CUSTOMER CREDIT_LIMIT long 4 112 0
CUSTOMER COMMENTS char 100 116 0
*

where:

cisam_field is the internal UFD table name

and the columns are:

Column Description

tabname The SQL table name, that is, the name the ODBC-enabled
products will ‘see’. It is the same name as in cisam_table.
Must be UPPERCASE.

fldname The field (column) name that the ODBC-enabled products will
‘see’. This name must be SQL compliant and satisfy the
following conditions. It must be:

�� in UPPERCASE

�� within 18 characters

�� unique

�� not an SQL keyword

�� not zero length

�� made up of 0-9, A-Z, _, with the first character
alphabetic and with no blanks.

type The data type. For full list, see below.

length The length in bytes of the field (column).

offset The offset within the record from byte zero.

ndec The number of decimal places.

U/SQL 3.10 and above the cisam_field table has the following additional three
columns:

cisam_field (tabname, fldname, type, length, offset, ndec,
fieldflags, colassignexpr, format)

The details of the new columns are as follows:

Column Data

Type

Description

fieldflags integer A bit field that contains attributes for the field:

�� Bit 9 (decimal 256) - Virtual Columns.
Refer to the section Virtual columns
below.

�� Bit 12 (decimal 2048) - Hidden Fields.

Transoft U/SQL User Guide

356

Refer to the section Hidden Fields below.

colassignexpr char(254) An expression that changes or defines the
value of the column. Refer to the sections
Virtual columns and Column assignment
expressions below.

format char(30) This is a string comprised of a combination of
key and non-key symbols, which is used to
represent dates, times, or timestamps.

These columns facilitate the following functionality:

Hidden fields

Setting bit 12 (decimal 2048) of fieldflags in the cisam_field table results in
the column being hidden from the user. The column can be used in a column
assignment or record expression and, if applicable, can be used by the query
planner for optimum performance.

Column assignment expressions

An expression can be placed on any column (field) to change its value depending
on the value of other columns in the same row (record). A column expression has
three forms:

1. IF <condition> THEN assignment_expression

2. [ELSE assignment_expression]

3. assignment_expression

4. $special_assignment_expression

where:

condition: consists of one or more predicates, combined with the logical

operators AND, OR and NOT.

assignment_expression: can be one of the following:

�� a column name, for example, AMOUNT

�� a string literal or numeric constant, for example, "Y" or 10

�� an arbitrary arithmetic expression, for example: ((FLAG2-3)/6) -
(AMOUNT*10) + FLAG2

Consider the following example. Assume a data record has the column BALANCE
which always holds the amount as a positive value. A further column CREDIT is
set to "N" if the BALANCE amount is negative. For an ODBC-enabled product to
be able to provide the summation of the amounts, taking into account whether
they are debit or credit values, from a number of rows (records), the value
BALANCE could be either:

IF CREDIT="N" THEN -BALANCE

Or

IF CREDIT<>'N' THEN BALANCE ELSE -BALANCE

The use of the colassignexpr column in the cisam_field has been extended to
allow the following syntax:

$special_assignment_expression:

Configure and Use

357

�� '$' has been introduced as a special operator to indicate the current field
addressed by the entry

�� 'special_assignment_expression' is an expression that resolves to a numeric
constant.

For example, suppose the field is a record_type and is stored with the values 18,
19 and 20 but the end user knows these as 1, 2 and 3, then the 'perceived' value
of the column must be adjusted by subtracting 17. This is achieved by setting the
colassignexpr to $17.

Note: The value 17 is positive and manipulates the perceived value to make the
stored value, not the other way round. Hence using the previous example, an
expression of $-17 would manipulate the column to be perceived to contain 35,
36 and 37.

Given the correct value, the process is reversible, the value is subtracted on a
SELECT and added on an INSERT or UPDATE.

However, there are limitations:

�� The fields must be numeric. They cannot be alpha-numeric

�� Such fields must not be duplicated (redefined) or part of an array.

Note: Scalar functions cannot be used in the column expression (colassignexpr)
columns. To add an assignment expression to a column, set the colassignexpr
field in cisam_field to be the required expression.

Virtual Columns

A virtual column is not a physical field that exists in the data record. A virtual
column can be defined in any table, where the value is determined solely from an
expression. To add a virtual column, set bit 9 (decimal 256) of fieldflags in
cisam_field, and set the colassignexpr field in cisam_field to be the required
expression.

An example of an expression to define a virtual column is:

IF FLAG<>'Y' THEN SVALUE ELSE -SVALUE

Where SVALUE is a real column.

Note: When defining a virtual column which is based on other virtual columns,
you must set the value of the offset column in the cisam_field table in the UFD
file to be greater than the offsets of the virtual columns on which it is based.

Data types

See the C-ISAM Data Types section.

Step 3: Define the Indexes

The UFD table cisam_index defines all the indexes associated with each
tabname declared in the table, cisam_table. The following example shows the
contents of the cisam_index UFD table:

cisam_index(tabname,indno,type,fld1,fld2,fld3,fld4,..., fld64)
----------- - - ------------ ----------- -----------

AREA 1 U AREA_CODE
COUNTY 1 U COUNTY_CODE
CUSTOMER 1 U CUST_CODE
CUSTOMER 2 U CUST_REP CUST_CODE

CUSTOMER 3 D CUST_REP

Transoft U/SQL User Guide

358

*

where:

cisam_index is the internal UFD table name

and the columns are:

Column Description

tabname The SQL table name that this index is for. It is the same name as
in cisam_table. Must be UPPERCASE.

indno The number of the index within the file.

type U - index is unique.

D - duplicate indexes allowed.

fld1

...

fld64 Up to 64 fields are permissible in the key. You only need specify,
in the template, as many index fields as are used. These key
fields must be UPPERCASE.

Note: A further column, indname, is automatically generated in the
cisam_index table.

Index Sequencing

U/SQL always assumes that all index key components are in ascending sequence.
However, it is possible to define C-ISAM indexes where an index key contains a
component that is defined as descending. U/SQL does not support this and
unpredictable results may occur.

To specify a descending key field, simply place a hyphen (‘-‘) before it in the field
name (for example, “-CUSTCODE”).

Note: If the whole of a multi-part key is descending then a hyphen is required
before each part.

Configure and Use

359

C-ISAM Data Types

This section lists all Universal File Dictionary (UFD) data types that can currently
be used with the U/SQL C-ISAM Data Source Driver. These data types are used in
a UFD text file to define the data types of individual fields, as part of an overall
description of the physical layout of records within a C-ISAM data file. A UFD text
file is used in the creation process of a Universal Data Dictionary (UDD).

The native C-ISAM data types are CHARTYPE, INTTYPE, LONGTYPE, FLOATTYPE,
DOUBLETYPE and DECIMALTYPE. They can be represented within a UFD text file
by using the appropriate UFD data type.

The use of high/low byte order and low/high byte order refers to big-
endian and little-endian respectively.

The use of len, ndec and format in the following tables, refers to the
cisam_field columns in a UFD text file, where:

len The maximum length of the data type

ndec The number of decimal places in the data type

format A string comprised of a combination of key and non-key symbols,
which is used to represent dates, times or timestamps.

The following data types are supported:

�� Character Data Types

�� Integer Data Types

�� Floating Point Data Types

�� Character Numeric Data Types

�� Packed Numeric Data Types

�� Miscellaneous data types

�� Data Types for PowerHouse

�� Date and Time Format

�� Obsolescent Data Types.

Character Data Types

Character data types are alphanumeric strings. The format field can be set to
define date, time or timestamp.

(0 < len <= 254, ndec = 0, format = format).

char Non-terminated. CHARTYPE

charz Null-terminated

Integer Data Types

Transoft U/SQL User Guide

360

Integer data types are 1 to 8-byte signed/unsigned integer data types with ndec
defining the location of an implied decimal point. The format field can be set to
define date, time or timestamp.

(0 < len <= 8, ndec >= 0, format = format).

intN Signed in native byte order

intL Signed in low/high byte order

intH Signed in high/low byte order

INTTYPE: len = 2. LONGTYPE: len = 4

uintN Unsigned in native byte order

uintL Unsigned in low/high byte order

uintH Unsigned in high/low byte order

Floating Point Data Types

Floating point data types are IEEE-754 floating point single/double precision data
types.

(len = 4 or 8, ndec = 0, format is not applicable).

floatN Native byte order

FLOATTYPE: len = 4. DOUBLETYPE: len = 8

floatL Low/high byte order

floatH High/low byte order

Floating point data types can also be IEEE-754 floating point single/double
precision data types which are interpreted as signed integers with ndec defining
the location of an implied decimal point.

(len = 4 or 8, ndec >= 0, format is not applicable).

intfN Native byte order

intfL Low/high byte order

intfH High/low byte order

Character Numeric Data Types

Character Numeric data types are integers held as a non-terminated string with
ndec defining the location of an implied decimal point. The format field can be
set to define date, time or timestamp.

(0 < len <= 15, ndec >= 0, format = format)

uint_char Unsigned

Configure and Use

361

int_charL Leading sign (ASCII over-punch)

int_charT Trailing sign (ASCII over-punch)

int_charLE Leading sign (EBCDIC over-punch)

int_charTE Trailing sign (EBCDIC over-punch)

int_charLS Leading sign separate

int_charTS Trailing sign separate.

Character Numeric data types are numeric strings with an embedded decimal
point. The decimal point is alligned as specified by ndec.

(0 < len <= 15, ndec >= 0, format is not applicable).

uflt_char Unsigned

flt_charL Leading sign (ASCII over-punch)

flt_charT Trailing sign (ASCII over-punch)

flt_charLE Leading sign (EBCDIC over-punch)

flt_charTE Trailing sign (EBCDIC over-punch)

flt_charLS Leading sign separate

flt_charTS Trailing sign separate.

Packed Numeric Data Types

4-bit binary coded decimal (BCD) (packed decimal) data types with ndec defining
the location of an implied decimal point. Set format to define date, time or
timestamp.

(0 < len <= 7, ndec >= 0, format is not applicable).

ubcd Unsigned

bcd Signed

8-bit binary coded 2-digit decimal data types with ndec defining the location of
an implied decimal point. Set format to define date, time or timestamp.

(0 < len <= 7, ndec >= 0, format is not applicable).

ubc2dd Unsigned

Miscellaneous data types

char1 Non-terminated packed alphanumeric string to
number conversion is base 64, with space

Transoft U/SQL User Guide

362

(ASCII 32) equating to zero.

char3 Non-terminated alphanumeric string with string
length held in 1-byte field header.

Decimal DECIMALTYPE: machine-independent up-to-17-
byte floating-point (up-to-16-byte packed
format mantissa, 1-bit sign and 7-bit exponent).
32 significant digits with exponents in range -
128 to +126.

float1 Machine-independent 6-byte floating-point (39-
bit mantissa, 1-bit sign and 8-bit exponent).
Low/high byte order within each 2-byte word.
Exponent in excess-128 notation. Normalised
mantissa with implied high-order bit of one.

float2 Machine-independent 8-byte floating-point (55-
bit mantissa, 1-bit sign and 8-bit exponent).
High/low byte order. Exponent in excess-128
notation. Normalised mantissa with implied
high-order bit of one.

float3 Floating point held as a non-terminated string.
Negative values are represented as either a
leading or trailing minus sign.

fixed5E Variation of binary code decimal (BCD) with sign
held in leading nibble (0 is positive, F is
negative). Number of decimal places is implied
and is specified in the ndec column of the
cisam_field table.

fixed5O Variation of binary code decimal (BCD) with sign
held in leading nibble (0 is positive, F is
negative). Trailing nibble is unused. Number of
decimal places is implied and is specified in the
ndec column of the cisam_field table.

fixed8 Integer held as a non-terminated string.
Negative values are represented as an over-
punch of the last digit in the range p to y, P to Y
(representing values from -0 to -9). Number of
decimal places is implied and is specified in the
ndec column of the cisam_field table.

fixed9 Machine-independent 2 to 16-byte packed
signed integer with number of digits and sign
held in 1-byte field header. Number of decimal
places is implied and is specified in the ndec
column of the cisam_field table.

fixed10 Machine-independent 2 to 15-byte packed
unsigned integer. Number of decimal places is
implied and is specified in the ndec column of
the cisam_field table.

Configure and Use

363

fixed11 Machine-independent variable length packed
signed integer with sign held in trailing nibble (3
is positive, 5 is negative). Number of decimal
places is implied and is specified in the ndec
column of the cisam_field table.

fixed12 Integer held as a fixed length null-terminated
string. The string is stored right justified and
space filled with the optional minus sign, '-',
preceding the digits. Number of decimal places
is implied and is specified in the ndec column of
the cisam_field table. Fractional portion
including ones digit are zero filled, that is 0 with
two decimals is 000 right justified.

fixed13 Fixed point held as a non-terminated string. The
decimal point is contained within the string, and
is positioned as specified in the ndec column of
the cisam_field table. The string is stored right
justified with an optional minus sign '-', and
leading space characters.

fixed15 Variation of binary code decimal (BCD) with sign
held in trailing byte (0 to 9 for positive, 'P' to 'Y'
for negative). Although ASCII over-punch
characters are used to represent the sign, it
does not affect the number held in BCD.
Number of decimal places is implied and is
specified in the ndec column of the
cisam_field table.

money1 Machine-dependent 2-part type comprising of a
4-byte integer, representing, say, dollars or
pounds, followed by a 2-byte integer,
representing cents or pence.

date(jd_31dec1799) DECIMALTYPE representing Julian date since
31/Dec/1799.

date(t2s6_ddmmyy) 6-byte non-terminated alphanumeric string:
ddmmy1y2, with year starting at 1900. y1 is in
the range 0 to 9, A to Z (representing the
decades 2000 to 2250). y2 is 0 to 9.

date(t2s6_yymmdd) 6-byte non-terminated alphanumeric string:
y1y2mmdd, with year starting at 1900. y1 is in
the range 0 to 9, A to Z (representing the
decades 2000 to 2250). y2 is 0 to 9.

date(t2s8_dd/mm/yy) 8-byte non-terminated alphanumeric string:
dd/mm/y1y2, with year starting at 1900. y1 is
in the range 0 to 9, A to Z (representing the
decades 2000 to 2250).

date(t2s8_yy/mm/dd) 8-byte non-terminated alphanumeric string:
y1y2/mm/dd, with year starting at 1900. y1 is
in the range 0 to 9, A to Z (representing the

Transoft U/SQL User Guide

364

decades 2000 to 2250).

date(t3n3f1_yymmdd) 4-byte fixed9 representing date in the form
yymmdd.

date(t3n4f1_ccyymmdd) 5-byte fixed9 representing date in the form
ccyymmdd.

date(t4n3f1_yymmdd) 3-byte fixed10 representing date in the form
yymmdd.

date(t4n4f1_ccyymmdd) 4-byte fixed10 representing date in the form
ccyymmdd.

date(t5s6_yymmdd) 6-byte non-terminated alphanumeric string: y1
y2/mm/dd, with year starting at 1900. y1 and
y2 are in the range 0 to 9, P to Y (representing
0 to 9 in the second millennium). That is, PP =
2000, PQ = 2001,... YY = 2099.

Data Types for PowerHouse

UFD

Type

Description

CH CHARACTER

IS INTEGER SIGNED

IU INTEGER UNSIGNED

ZS ZONED SIGNED

ZU ZONED UNSIGNED

FL FLOAT

PS PACKED SIGNED

PU PACKED UNSIGNED

FF FREEFORM

JD JDATE

PD PHDATE

PN PHDATE with 0 interpreted as NULL

Date and Time Format

Configure and Use

365

The CISAM_FIELD format column, within a UFD text file, can be used to define
the format of date, time and timestamp data types. The 'base' data type can be
any of the character or integer data types described previously.

A format string is comprised of a combination of key and non-key symbols. A
Julian epoch (base) date is specified in the form "ccyymmdd". Non-key symbols,
such as solidi ('/'), colons and hyphens, are considered to be stored formatting
characters and are reproduced on output. If a date format string does not
contain the "cc" century symbol, a date is considered to be within the century as
determined by the date offset ini file entry, FixedDateOffset. The key symbols
are described in the table below:

Key

Symbol

Description

CC 2-digit century.

YY 2-digit year.

MM 2-digit month.

MON 3-character month. (i.e. Jan, Feb, Mar, ...)

DDD 3-digit days since start of year.

DD 2-digit day.

J Julian date (in days). Epoch date follows symbol.

hh 2-digit hour (24-hour format).

mmmm 4-digit minutes since midnight.

mm 2-digit minute.

sssss 5-digit seconds since midnight.

ss 2-digit second.

ff 2-digit fraction of second.

jh Julian timestamp in hours. Epoch date follows symbol.

jm Julian timestamp in minutes. Epoch date follows symbol.

js Julian timestamp in seconds. Epoch date follows symbol.

Examples of date format strings are:

"CCYYMMDD", "YYDDD", "J19601202", "DD/MON/CCYY".

Examples of time format strings are:

"hhmmss", "sssss", "hh:mm:ss".

Example of timestamp format strings are:

"jm19601202", "CCYY/MM/DD-hh:mm:ss:ff".

Transoft U/SQL User Guide

366

Obsolescent Data Types

The table below lists the obsolescent data types and the new data types along
with the requisite format strings (where applicable), they have been replaced by:

Obsolescent data type

name

New data

type name

Length Format string

char char - Not applicable

char2 charz - Not applicable

date(i4_yyyymmdd) intN 4 CCYYMMDD

date(j3H_31dec1599) intH 3 J15991231

date(j4_31dec1899) intN 4 J18991231

date(j4H_31dec1899) intH 4 J18991231

date(j4L_31dec1899) intL 4 J18991231

date(js_31dec1899) char - J18991231

date(js6_31dec1899) char 6 J18991231

date(n10_mm-dd-ccyy) char 10 MM-DD-CCYY

date(s6_ddmmyy) char 6 DDMMYY

date(s6_mmddyy) char 6 MMDDYY

date(s6_yymmdd) char 6 YYMMDD

date(s8_ccyymmdd) char 8 CCYYMMDD

date(s8_dd/mm/yy) char 8 DD/MM/YY

date(s8_ddmmccyy) char 8 DDMMYYCC

double floatN 8 Not applicable

doubleH floatH 8 Not applicable

doubleL floatL 8 Not applicable

fixed14 intN 2 Not applicable

fixed14H intH 2 Not applicable

fixed14L intL 2 Not applicable

fixed3 intfN 8 Not applicable

fixed3H intfH 8 Not applicable

Configure and Use

367

fixed3L intfL 8 Not applicable

fixed4 intN 4 Not applicable

fixed4H intH 4 Not applicable

fixed4L intL 4 Not applicable

fixed6 flt_charLS - Not applicable

fixed7 int_charT - Not applicable

float floatN 4 Not applicable

floatH floatH 4 Not applicable

floatL floatL 4 Not applicable

int/int2H intH 2 Not applicable

int1 intN 1 Not applicable

int2 intN 2 Not applicable

int2L intL 2 Not applicable

int4 intN 4 Not applicable

int4L intL 4 Not applicable

int5L intL 5 Not applicable

long/int4H intH 4 Not applicable

numchar char 2 Not applicable

time(m2H) intH 2 mmmm

time(m2L) intL 2 mmmm

tstamp(m4H_31dec1899) intH 4 jm18991231

tstamp(m4L_31dec1899) intL 4 Jm18991231

uint1 uintN 1 Not applicable

uint2 uintN 2 Not applicable

uint2H uintH 2 Not applicable

uint2L uintL 2 Not applicable

uint3L uintL 3 Not applicable

uint4 uintN 4 Not applicable

uint4H uintH 4 Not applicable

Transoft U/SQL User Guide

368

uint4L uintL 4 Not applicable

Configure and Use

369

Support for Record Number Access

When a field with a type (field type) of 'recno' is added to the cisam_field table,
an internal U/SQL pseudo index is automatically provided to allow data access by
record number. The offset of this field positions it with relation to other fields. It
does not have to be mapped over blank data. You cannot change the value of the
record number field, and it is ignored when inserting or updating. You must only
define one of these fields per table.

For example, consider the following UFD text file:

cisam_table (tabname,

reclen,

nfield,

nindex,

data_file,

recexpr)

 TEST1 80 4 0 TEST1 NULL

*

cisam_field (tabname,

fldname,

type,

length,

offset,

ndec)

 TEST1 RECID recno 0 0 0

 TEST1 FLD1_1 int 2 0 0

 TEST1 FLD1_2 int 2 2 0

 TEST1 FLD1_3 int 2 4 0

 TEST1 TEXT1 char 14 6 0

*

cisam_index(tabname,indno,type,fld1,fld2,fld3,fld4)

*

Note:

�� An entry for RECID is not required in the 'index' table as it is a pseudo index

�� The RECID field is needed in INSERT and UPDATE statements, and the data
entry in the table must be set to NULL

�� In the example above the file contains no C-ISAM indexes. If it did then
entries are needed in the cisam_index table for the 'real' index fields.

Typical queries are:

SELECT * FROM test1 WHERE RECID > 8;

or:

INSERT INTO test1 VALUES ("",1,1,1,"Insert");

SELECT * FROM test1 WHERE FLD1_3 BETWEEN 0 and 3;

Transoft U/SQL User Guide

370

Setting Up a Business BASIC Data Dictionary

Setting Up a Business BASIC Data Dictionary

This section describes setting up a UDD for Business BASIC (BBASIC) data.
Universal Business Language (U/BL) and its ISAM, derived from Universal
Business BASIC (UBB), is Transoft’s Open Systems version of Business BASIC. It
is compatible with Data General’s Business BASIC, B32 Business BASIC and
Bluebird’s SuperDOS Business BASIC.

This section applies only to Multiple-tier installations for both UNIX and Windows
NT Server platforms.

Windows NT Server

Note that Windows NT Server Revision 3.00 of U/SQL for BBASIC has the
following restriction:

�� There is no support for BBREUSE and Extended File System (EFS).

Note: Refer to the Overview and Creating a UDD sections for an overview of the
dictionary technology and the steps involved in creating a UDD.

Introduction

The U/SQL Server supports a data source driver for BBASIC ISAM covering all the
main file types, for example, Logical, PARAM-based or Linked Lists via R1
pointers. In addition, all the main data types are supported.

The first step is to define the contents of your data dictionary.

Configure and Use

371

Defining a BBASIC ISAM Data Dictionary

Create a Text File

The data dictionary is specified by creating a text file, for example,
dictionaryname.ufd. It consists of four sections, each of which relates to a table
in the UFD:

�� bb_logfile

�� bb_table

�� bb_field

�� bb_index

Each table is specified as an entity, and a table type can be repeated as any
number of entities.

How you specify this UFD text file is described in the Creating a UDD section.

The following steps must be performed to create tables to specify your U/BL and
UBB data files and their structure:

�� Step 1: Define the Data Files

�� Step 2: Point the SQL Table Names to the BBASIC Logical Filenames

�� Step 3: Define the Fields (Columns)

�� Step 4: Define the Indexes.

Step 1: Define the Data Files

bb_logfile (lfname,ftype,dbfile,start_sector,reclen,last_record)

---------- -- ------------------------------ ------ ---- ------
AREAS L AREADATA 0 24 50
COUNTIES L COUNTY 0 22 100
CUST L CUSTMAST 8 204 5000

TRANS L TRANSMAST 0 200 10000
*

where:

bb_logfile is the internal UFD table name

and the columns are:

Column Description

lfname The logical or sub-file name. This is the name used in a
BBASIC program in either a D$ string or LOPEN statement.

ftype The file type, see below.

dbfile The physical file name.

start_sector Starting sector of the logical file within the physical file.

reclen The record length.

Transoft U/SQL User Guide

372

last_record The number of records in the logical file.

File types, ftype, are:

ftype Description

D Direct Access, for example, a control file, where record zero
contains data.

L Linked available record. A normal BBASIC ISAM file on which you
can perform GETREC, and so on, where there is a record zero that
is not a data record.

PD, PL It is also possible to obtain the equivalent of the D and L file type
information directly from the PARAM file by setting fftype to PD
or PL. In this case start_sector, reclen and last_record must
be set to zero.

VD, VL These are equivalent to the D and L types above, except that they
specify use of BBASIC logical file volume label information
directly. In this case start_sector, reclen and last_record must
be set to zero.

SD SuperDOS FCB file. In this case start_sector must be set to ‘2’.
Set reclen and last_record as usual, as these entries are not
read from the FCB.

N THIS MUST BE USED READ ONLY. This is a special case and
means that the R1 pointer will be used to calculate the record
position by applying the algorithm of: Record_Posit’n=
Start_sector+512+((R1-1)*Record_length).

X THIS MUST BE USED READ ONLY. This is a special case and
means that the R1 pointer will be used as an absolute offset,
rather than a record number.

Z THIS MUST BE USED READ ONLY. Deleted records are flagged
with a status of 0.

The file type Z means that the file is a "linked available record"
type file, that is normally a type L, but that a record in the file is
only considered to be logically deleted if its first two bytes are
equal to zero. Records with non-zero values in their first two
bytes are considered to be active. This follows the B32 Business
Basic convention for "linked available record" type files.

In DG Business BASIC, UBB and U/BL, a record is considered to
be logically deleted if its first two bytes are less than or equal to
zero.

R Should only be set for an Index file. This has the same effect for
the specific file as setting the BBREUSE INI directive, for all index
files . It allows empty index blocks to be reused by the
maintenance of an empty block chain in record zero of the files. If
BBREUSE is set to Y, in the U/SQL INI file, the BB-ISAM file
handler will manage the empty index block chain

Configure and Use

373

S If this is set for an Index file, the index key will be space filled
rather than null-filled.

A If this is set for a data file, all records will be read when accessing
the data file with a sequential read, without checking for deleted
records.

Step 2: Point the SQL Table Names to the BBASIC Logical Filenames

It is often convenient for the SQL table names to be the same as the BBASIC
logical filenames.

bb_table (tabname,lfname, tabtype, cond)

---------- ---------- -- ------------------------
AREAS AREAS
COUNTIES COUNTIES
CUSTOMERS CUST

INVOICES TRANS REC_TYPE=“I”
INDEX TYPEIX I
*

where:

bb_table is the internal UDD table name

and the columns are:

Column Description

tabname The SQL table name, that is, the name the ODBC-enabled
products will ‘see’. Table names must be SQL compliant and
satisfy the following conditions:

�� are in UPPERCASE

�� are within 18 characters

�� are unique

�� are not SQL keywords

�� are not zero length

�� are made up of 0-9, A-Z, _, with the first character
alphabetic and with no blanks

Note: To ensure consistent locking with your U/BL
applications, tabnames need to have the first 14 characters
unique and be the same names as used in U/BL lock
statements.

lfname The BBASIC logical or sub-file name. This is the name that
matches the lfname field in the bb_logfile.

tabtype The table type: see below.

cond Conditional test to establish if record belongs to table. This is
an expression (maximum 250 characters). See the Multiple
Record Type Handling section below.

Transoft U/SQL User Guide

374

Index Names Note: When logical filenames used for indices have "." in their
names, care must be taken to ensure that the length of the filename up to the "."
is the same for all indices, or at least not relied upon for order. This is because
U/SQL translates the "." to an underscore ("_") since a "." in an index-name is
invalid. However, an underscore is above "Z" in ASCII order, so two indices like
"MYINDEX.IX" and "MYINDEX2.IX" would be in correct order before substitution,
but after substitution "MYINDEX_IX" would actually be after "MYINDEX2_IX". This
causes an error as the wrong index can be used for a query and the wrong results
generated.

Valid table types, tabtype, are:

tabtypes Description

I Index file

D or

blank

Data File

Multiple Record Type Handling

The cond column in the bb_table can contain a condition or expression. Only
records that satisfy the condition or expression will be included in the table. The
syntax of the conditional expression is exactly the same as that for an SQL
WHERE clause search-condition (see the Expression Handling section) and
refers to columns in the table.

For example, assume the file TRANSMAST contains two record types, INVOICES
and PAYMENTS. They are distinguished by INVOICES having the field (column)
TYPE=1 and PAYMENTS having TYPE=2 AND CREDIT=“Y”. You could therefore
define three tables called, say, TRANSACTION, INVOICE and PAYMENT, which will
be ‘seen’ to contain all transactions, just invoices and just payments respectively,
when viewed by an ODBC-enabled product. The entries in the bb_table are:

bb_table(tabname, lfname, tabtype,cond)
----------- ------------ - -----------------------
TRANSACTION TRANSMAST D

INVOICE TRANSMAST D TYPE=1
PAYMENT TRANSMAST D TYPE=2 AND CREDIT=“Y”
*

Step 3: Define the Fields (Columns)

bb_field (tabname,fldname,type,len,offset,ndec)

---------- ---------- - ---- ---- --
AREAS ARCOD A 4 1 0
AREAS ARDES A 20 5 0

COUNTIES COCOD I 2 1 0
COUNTIES CDESC A 20 3 0
CUSTOMERS SPARE A 2 1 0
CUSTOMERS CCODE A 8 3 0

CUSTOMERS CADD C 80 11 0
CUSTOMERS AREA I 1 96 0
CUSTOMERS REPCODE L 1 97 0

CUSTOMERS CCAT I 1 98 0
CUSTOMERS PNTFTR L 4 99 0

Configure and Use

375

CUSTOMERS DTELST J 2 103 0
CUSTOMERS RECNO R 150

*

where

bb_field is the internal UFD table name

and the columns are:

Column Description

tabname The SQL table name, that is, the name that the ODBC-
enabled products will 'see'. Table names must be SQL
compliant and satisfy the following conditions:

�� are in UPPERCASE

�� are within 18 characters

�� are unique

�� are not SQL keywords

�� are not zero length

�� are made up of 0-9, A-Z, _, with the first character
alphabetic and with no blanks

fldname The field (column) name. Column names must be SQL
compliant and satisfy the following conditions:

�� are in UPPERCASE

�� are within 18 characters

�� are unique

�� are not SQL keywords

�� are not zero length

�� are made up of 0-9, A-Z, _, with the first character
alphabetic and with no blanks

type The data type.

len The data length.

offset The offset within the record.

ndec The number of decimal places.

Valid data types, type, are:

type Description

3 THIS MUST BE USED READ ONLY. Pseudo triple precision variable,
that is the first two bytes hold an amount which will be multiplied
by 100,000,000 and the next four bytes hold an amount which is
added to the first result. Set Reclen to 6 and it is possible to
have a ndec value.

Transoft U/SQL User Guide

376

A Alphanumeric (null filled).

S The data type S should be used for alphanumeric fields which are
involved in multi-component keys, and which have been padded
with space characters in the Business Basic application.

Normally, the U/SQL BBASIC ISAM Server expects such fields to
be padded with nulls. Defining the fields as data type A causes
records to be mistakenly flagged as deleted when viewed using
third party ODBC-enabled products such as Microsoft Access.
Therefore, define the fields as data type S so that the U/SQL
Server is aware that they have been padded with spaces rather
than nulls.

Note: The S data type only applies to alphanumeric fields which
are space filled and involved in multi-component keys.

B Bit (For this type, ndec specifies the relevant bit 0-n).

C Crammed.

I Integer (signed).

J Julian date; normal DG format. A zero value gives a date of
“0000-01-01” which is considered a “valid” date. For example,
Microsoft Access will accept this date.

K Julian date. A zero value gives a date of “0000-00-00” which is
NOT considered a “valid” date. For example, Microsoft Access will
NOT accept this date.

D Numeric date of format YYMMDD or YYYYMMDD determined by
the length.

�� For 8 digit dates, set ndec to 0.

�� For 6 digit dates, ndec is overloaded to specify the two
digit ‘switchover’ year for the implied century, where:

- 0=YY<=ndec implies year = 20YY

- ndec<YY implies year = 19YY

For example, if ndec=25 then 050717='2005-07-17' and
320717='1932-07-17'.

E Numeric date of format DDMMYY or DDMMYYYY determined by
the length.

�� For 8 digit dates, set ndec to 0.

�� For 6 digit dates, ndec is overloaded to specify the two
digit ‘switchover’ year for the implied century, where:

- 0=YY<=ndec implies year = 20YY

- ndec<YY implies year = 19YY

For example, if ndec=25 then 170705='17-07-2005' and
170732='17-07-1932'.

L Linked list pointer. This denotes that the entry in this field is the
R1 pointer to a record in the same or another file. Use only as

Configure and Use

377

join in WHERE clause. (0 is the end of list).

R Record number of the current row (only one column per table can
be this type). See the Record Number Column section.

U Unsigned integer.

F Numeric date of format MMDDYY. This displays a similar
behaviour to the existing date data types D, and E. You can have
either a 8-digit date when ndec=0 or a 6 digits date when ndec
> 0.

H Numeric date of format MMDDYYY. This has a 3-digit number for
the year. This means the year is actually the addition 1900+YYY.
For example:

0105032 ==>05/01/1932 (dd/mm/yyyy)

0105132 ==>05/01/2032 (dd/mm/yyyy)

M Numeric date of format DDMMYYY. This has a 3-digit number for
the year. This means the year is actually the addition 1900+YYY.
For example:

0501032 ==>05/01/1932 (dd/mm/yyyy)

0501132 ==>05/01/2032 (dd/mm/yyyy)

N Numeric date of format YYYMMDD. This has a 3-digit number for
the year. This means the year is actually the addition 1900+YYY.
For example:

0320105 ==>05/01/1932 (dd/mm/yyyy)

1320105 ==>05/01/2032 (dd/mm/yyyy)

Note: SuperDOS special cram characters are supported.

Step 4: Define the Indexes

Defining the indexes is a two-stage process. First, you define the index filename
in the bb_logfile table. This is similar to the data file definition in ,Step 1:

bb_logfile (lfname,ftype,dbfile,start_sector,reclen,last_record)

---------- -- ------------------------------ ------ ---- ------

CUSTINDEX I CUSTMAST 0 512 400

*

where:

bb_logfile is the internal UDD table

and the columns are:

Column Description

lfname The logical or sub-file name. This is the name used in a
BBASIC program in either a D$ string or LOPEN statement.

Transoft U/SQL User Guide

378

ftype The file type, see below.

dbfile The physical file name.

start_sector The starting sector of the logical file within the physical file.
(Each sector is always 512 bytes regardless of index block
size).

reclen Record length of the index block (512 or 2048).

last_record The number of records in the logical file.

File types, ftype, are:

ftype Description

I or

blank

Normal index.

PI To obtain the equivalent index file type information directly from
the PARAM file, set ftype to PI. In this case, set start_sector,
reclen and last_record to zero.

VI To obtain the equivalent index details from the BBASIC logical file
volume label directly, set ftype to VI. In this case, set
start_sector, reclen and last_record to zero.

Secondly, point the SQL table at the index file and state the key fields:

bb_index (tabname,indname,indtype,fld1,fld2,fld3,fld4,.....,fld64)

----------- ----------- - ----- ----- ----- ----- ----- -----

CUSTOMERS CUSTINDEX U CCODE

*

where:

bb_index is the internal UFD table name

and the columns are:

Column Description

tabname The SQL table name; that is, the name that the ODBC-enabled
products will 'see'. Table names must be SQL compliant, see
bb_table. They must be UPPERCASE.

indname The index name as defined above.

indtype Index type, see below.

fld1 The first field in the key.

...

fld64 Up to 64 fields are permissible in the key. You only need specify,
in the template, as many index fields as are used. These key

Configure and Use

379

fields must be UPPERCASE.

Index types, indtype, are:

indtype Description

D Duplicates allowed.

U Unique.

Record Number Column

A record number column can be added to all tables. If the column appears in a
table defined on a data record, it will contain the record number of that data
record. When the record number column is contained in a table defined on an
index, it will contain the record number (R1) associated with the key in the index.

If the record number column appears in a table defined on a data record, an
index using the record number will automatically be defined in the UDD.

The record number column can be added to a table by adding an extra field in the
bb_field table. This field must have its type set to R. The len and ndec fields do
not have to be set. Since columns are arranged in a table in field offset order, the
offset column can be used to position the record number column within the
table. For example, set the offset to 0 if the column should be first in the table, or
set it to something greater than the last data field offset, to make it appear last in
the table.

Tables Defined only on Data Records

Normally you will define tables for data records with their associated indexes, that
is Step 2 and Step 4 above, so that as a data record is added or deleted its index
entries are automatically updated accordingly.

However, you can simply define a table for data records and not include the
associated index(es), that is do not include Step 4 (bb_index). If a record from
such a table is deleted, only the data record is deleted: any index must be
deleted separately. If a new record is inserted, only the data record is inserted
and no index.

Note: If the table contains a record number column, see the Record Number
Column section above, an index on it will be automatically created. This means
the table still has a unique key.

Tables Defined Only on Indexes

Tables can be defined on an index to provide access, key insertion and deletion
independent of any associated data file. To achieve this, set the field in bb_table
called tabtype to the letter ‘I’. Set the logical filename field, lfname, to the
filename that contains the index. The index for any such table, defined in the
bb_index table, will of course contain all the fields in the table (except any
record number field), see the Record Number Column section. For example:

bb_table(tabname,lfname,tabtype,cond

--------- ------------ - ------------------
INDEX TYPEIX I

Transoft U/SQL User Guide

380

Note: Do not define a table on an index unless you specifically require this
independent access to the index. Indexes set up in this way are not automatically
updated with the associated data record.

Configure and Use

381

U/SQL Record Mapper

Business BASIC allows you to create your own data types that are not directly
supported by U/SQL. These extensions also cover, for example, special cram
characters, numeric values where the decimal point is implied by another
‘controlling’ field, and so on.

This functionality is facilitated by the U/SQL Record Mapper. The U/SQL Record
Mapper allows the manipulation of BBASIC ISAM data by a UBB or U/BL program
prior to its submission to the U/SQL Server engine. This means that data types
which are not currently supported by U/SQL can be manipulated into supported
data types. Additionally it allows for “virtual columns”, that is data items to be
calculated or translated from other fields in the BBASIC ISAM file.

The diagram below shows the U/SQL Record Mapper architecture:

The following example makes use of the Demonstration Books Wholesaler
application, provided with U/SQL, to illustrate these features.

Note: This example assumes a prior knowledge of UBB and U/BL programming
and the maintenance and creation of U/SQL UDDs.

There are three distinct phases in setting up the U/SQL Record Mapper:

�� Define the remapped table in the UDD via modification to the UFD. The
UFD, remap.ufd, is provided as an example.

�� Provide the U/SQL Server with the location of the message queue.

�� Create a UBB or U/BL program, which can be run as a background job, to
handle the remapping. This communicates with the U/SQL Server via a
message queue. The UBB or U/BL program, remap.bb, is provided as an
example.

Defining the Remapped Table

Within remap.ufd there are three remapped tables:

Original table

name

Remapped table

name

Feature illustrated

Transoft U/SQL User Guide

382

ORDERS NEWORDER Data type manipulation

STOCK NEWSTOCK Virtual Columns

CUSTOMER NEWCUST Data translation

Firstly, we shall look in detail at the ORDERS and NEWORDER definition.

There are no additional changes to bb_logfile but in bb_table there is an
additional table NEWORDER, which is linked to the lfname, ORDERS.

bb_logfile(lfname,dbfile,start_sector,reclen,last_record)
---------- ------------ ---- ---- ------

ORDERS BOOKS 291 32 100
ORDRIX BOOKS 298 512 50
*

bb_table (tabname,lfname)

--------- -------------
ORDERS ORDERS
NEWORDER ORDERS

*

Within bb_field we now have entries for both tables. The item we wish to remap
is ODATE. In the underlying data ODATE is held as a 4 byte numeric in the format
YYMMDD, for example 970728 (28th July 97). We wish to remap this to a DG
Julian date. All other fields remain the same but ODATE is type I in table ORDERS
whereas it is type J in table NEWORDER. Note that the record length of ORDERS
is 32 but NEWORDER.ODATE is defined with offset 33.

Note: It is the definition of an offset greater than the record length that will
trigger remapping.

Additional remapped fields can be added to NEWORDER, if required. Since the
length of NEWORDER.ODATE is defined as length 4 then the next remapped field
would have offset 37, and so on for any extra fields that you may add.

bb_field (tabname,fldname,type,len,offset,ndec)
----------- ------------- - --- --- ---

ORDERS ORDNO I 4 3 0
ORDERS CUSTCODE A 4 7 0
ORDERS ODATE I 4 11 0
NEWORDER ORDNO I 4 3 0

NEWORDER CUSTCODE A 4 7 0
NEWORDER ODATE J 4 33 0
*

The final amendment is to duplicate the index definition(s) of table ORDERS for
table NEWORDER.

bb_index (tabname,indname,indtype,fld1,fld2)

----------- -------- - ---------- ----------
ORDERS ORDRIX U ORDNO
NEWORDER ORDRIX U ORDNO

*

The UDD can now be created, from this UFD as described in the Creating the UDD
from the UFD Text File section.

Provide U/SQL Server with the Location of the Message Queue

Configure and Use

383

The location of the message queue is determined via the UBLMAPSVR directive
in the UNIX usqlsd.ini configuration file or the Windows NT Server Registry. It
can be a global setting in the [Data Source Defaults] section or local to a
particular UDD. Example UNIX usqlsd.ini entries are:

[Data Source Defaults]

UBLMAPSVR=/u2/proj/client_data/bridge/UBLMAPPER

[remap.udd]

UBLMAPSVR=/tmp/UBLMAPFILE

The UBLMAPSVR file provides the location of the message queue, in memory. It
is not the conduit for the messages.

Note: Configuration directives are described in the OBDC.INI Directives section.

Create U/BL Program to Service the Remapping

The sample program remap.bb, shown below, is a guide only. Since it contains
additional information, which is displayed to the screen for illustrative purposes, it
must be run in the foreground on a terminal session. In a live situation you will
normally run the program as a background job. The basic purpose of the program
is to create, and manage, a message queue between itself and the U/SQL Server
process.

We shall now look at its component parts in detail, with particular reference to
the tables ORDERS, and NEWORDER. You may find it useful to refer to the U/BL
Online Help for more background on the STME calls which are made.

00001 REM Example U/SQL Record Mapping Server
00010 DIM SERVER$[80]
00020 LET SERVER$="/usr/client_data/bridge/UBLMAPPER"

Note that SERVER$ corresponds to the UBLMAPSVR directive entry.

00100 GOSUB 10000 : initialize tables
00110 GOSUB 20000 : Create the message Q. Expects a variable SERVER$
00120 PRINT "Waiting for messages on global port ";GPORT

00130 STMA 8,5
10000 REM initialize tables we can deal with

Obviously there are many ways in which this can be done.

10010 LET MAXTAB=10

10020 DIM TABNAM$[MAXTAB*30],T$[30],MODE$[1]
10030 RESTORE 10200
10040 LET NTAB=0 \ TABNAM$=""

10050 READ T$
10060 IF T$="*" THEN GOTO 10110
10070 LET T$[0]=FILL$(0)
10080 LET TABNAM$[0]=T$

10090 LET NTAB=NTAB+1
10100 GOTO 10050
10110 RETURN

10200 DATA "NEWCUST"
10210 DATA "NEWSTOCK"
10220 DATA "NEWORDER"
10290 DATA "*"

20000 REM Create the message Q. Expects a variable SERVER$
20010 DIM MSGCTRL$[24],MSGBUF$[4096],LPUSED[100]

20020 LET LPORT=1 \ GPORT=0

Transoft U/SQL User Guide

384

20030 STME 23,E,SERVER$,LPORT
20040 IF E<>-1 THEN GOTO 29000 : error condition

A local port for communications has now been established.

20050 STME 26,E,LPORT,GPORT
20060 IF E<>-1 THEN GOTO 29000 : error condition

A global port is now bound the local port and GPORT will be used to send

messages to, and receive them from, the U/SQL Server.

20070 LET MSGCTRL$=FILL$(0)
20080 LET MSGBUF$=FILL$(0)

20090 FOR I=1 TO 100
20100 LET LPUSED[I]=0
20110 NEXT I

LPUSED is an array which keeps track of the user number.

20990 RETURN

00200 GOSUB 21000 : receive a message
00202 PRINT "rcvd: ";MSGBUF$[1,31]

00203 PRINT
00204 STMA 8,5

21000 REM receive a message
21010 LET MSGCTRL$=CHR$(0,4),CHR$(1,4),CHR$(LPORT,2),FILL$(0)
21020 STME 21,E,MSGCTRL$,MSGBUF$

21030 IF E<>-1 THEN GOTO 29000 : error condition
21040 LET CLNTPID=ASC(MSGCTRL$[3,4])

CLNTPID will be one of the following values:

�� CLNTPID=1 - A new connection is required by an attaching U/SQL Server

process, that is, a new client is connecting.

�� CLNTPID=2 - A client has disconnected.

�� CLNTPID>2 - This signifies that the message relates to a remapping.

21050 IF CLNTPID=1 THEN
21060 GOSUB 21500 : allocate a free local port for new client
21070 GOTO 21010
21080 END IF

21090 IF CLNTPID=2 THEN
21110 GOSUB 21700 : release a local port (client done)
21120 GOTO 21010

21130 END IF

Otherwise return to process the message.

21190 RETURN

21500 REM allocate a free local port for new client
21510 FOR I=1 TO 100
21520 IF LPUSED[I]=0 THEN GOTO 21540

21530 NEXT I
21540 LET LPUSED[I]=1
21550 LET MSGBUF$=CHR$(I+2,2)

Because values 1 and 2 are used for other purposes (see above), I+2 is the
CLNTPID.

21560 GOSUB 22000 : send a message
21562 PRINT "alloc client ";I+2

21563 STMA 8,5

Configure and Use

385

21570 RETURN

21700 REM release a local port (client done)
21710 LET I=ASC(MSGBUF$[1,2])
21720 LET LPUSED[I-2]=0

Again we must allow for CLNTPID values of 1 and 2.

21722 PRINT "release client ";I
21724 STMA 8,5
21730 RETURN

22000 REM send a message
22020 LET MSGCTRL$=CHR$(0,4),CHR$(GPORT,4),CHR$(CLNTPID,2),FILL$(0)

22030 STME 20,E,MSGCTRL$,MSGBUF$
22040 IF E<>-1 THEN GOTO 29000 : error condition
22050 RETURN

Now look at how an input message is processed.

00200 GOSUB 21000 : receive a message
00202 PRINT "rcvd: ";MSGBUF$[1,31]

The input message buffer contains:

byte 1 mode I = input mapping (from a SELECT)

O = output mapping (UPDATE, or INSERT)

bytes 2-
31

tablename

bytes 32 to end of buffer contains the record contents

00203 PRINT

00204 STMA 8,5
00210 GOSUB 11000 : identify table

The table named is checked to be known to the program, before the code is
executed that processes it to your requirements.

00220 ON TABNO THEN GOSUB 01000,02000,03000

Firstly, we shall examine a SELECT on the NEWORDER table (TABNO=3) and,
after the remapping, send a message back to the U/SQL Server.

00230 GOSUB 22000 : send a message

00240 GOTO 00200 To get the next message

11000 REM identify table

11010 LET MODE$=MSGBUF$[1,1] MODE$ can be “I” or “O” (See above)
11020 LET T$=MSGBUF$[2,31]
11030 FOR TABNO=1 TO NTAB

11040 LET N=(TABNO-1)*30+1
11050 IF TABNAM$[N,N+29]=T$ THEN RETURN
11060 NEXT TABNO

11070 PRINT "Table ";T$;" is not known"
11080 STOP

03000 REM Mapping for NEWORDER table
03010 DIM ORD$[32],NEWORD$[36],R$[6],RN$[20]
03020 IF MODE$="O" THEN GOTO 03500 : output mapping of NEWORDER

In this instance MODE$ will be “I” (To satisfy a SELECT statement). Therefore we

will manipulate ODATE from YYMMDD to a DG Julian date.

Transoft U/SQL User Guide

386

03030 LET ORD$=MSGBUF$[32,61]

Initially we read in the UNMAPPED record and, since the record length of the
ORDER table is 64, we extract bytes 32 to 95 of the message buffer. Refer to the
previously described layout of the buffer.

03040 LET DATE=ASC(ORD$[11,14])

If you refer back to the original definition of ORDERS.ODATE in remap.ufd you
will see that it is a four byte integer at offset 11 and this is what is extracted into
the variable DATE.

bb_field (tabname,fldname,type,len,offset,ndec)

----------- ------------- - --- --- ---
ORDERS ODATE I 4 11 0

03050 LET YY=DATE/10000
03060 LET MM=MOD(DATE/100,100)

03070 LET DD=MOD(DATE,100)
03080 STMA 12,JDATE,MM,DD,YY

The year, month, and day components of DATE are extracted and an STMA 12

used to place the Julian date in JDATE.

03090 LET JDATE=CHR$(JDATE,4)

03110 LET NEWORD$=ORD$,RN$

JDATE is then placed in a return string JDATE and the remapped record NEWORD$ is

created from the original ORDER record in ORD$ (length 32 bytes) plus RN$. Thus

the offset of NEWORDER.ODATE in table NEWORDER is 33 with a length of 4
bytes. This is reflected in remap.ufd as:

bb_field (tabname,fldname,type,len,offset,ndec)
----------- ------------- - --- --- ---
NEWORDER ODATE J 4 33 0

and will be unpacked from the returned message buffer by the U/SQL Server.

03120 LET MSGBUF$[32]=NEWORD$
03130 RETURN

The method of sending the message is as follows:

22000 REM send a message
22020 LET MSGCTRL$=CHR$(0,4),CHR$(GPORT,4),CHR$(CLNTPID,2),FILL$(0)

GPORT was obtained from:

20050 STME 26,E,LPORT,GPORT

CLNTPID is extracted from the input message

21040 LET CLNTPID=ASC(MSGCTRL$[3,4])

and the message is sent with a STME 20

22030 STME 20,E,MSGCTRL$,MSGBUF$
22040 IF E<>-1 THEN GOTO 29000 : error condition
22050 RETURN

The net result of this can be seen by comparing the results of a SELECT on the
tables ORDERS, and NEWORDER. For example, using the UNIX Interactive U/SQL
utility, usqli:

U/SQL> select * from orders;

 ORDNO CUSTCODE ODATE
 ----- -------- -----
 123001 C001 940723

U/SQL> select * from neworder;
 ORDNO CUSTCODE ODATE

Configure and Use

387

 ----- -------- ------
 123001 C001 1994-07-23

Whilst ORDERS.ODATE is simply a number, NEWORDER.ODATE is correctly
treated as a date.

We will now examine the remapping which applies in an UPDATE, or INSERT on
the NEWORDER table. We are assuming the receipt of a message with mode “O”.

03020 IF MODE$="O" THEN GOTO 03500 : output mapping of NEWORDER
03500 REM output mapping of NEWORDER
03510 LET NEWORD$=MSGBUF$[32,67]

We firstly extract the 36 bytes of the record NEWORDER into a string NEWORD$.

03520 LET ORD$=NEWORD$[1,32]

The first 32 bytes correspond to the field layout in ORDER record and are
extracted into the string ORD$.

03530 LET JDATE=ASC(NEWORD$[33,36])

The Julian date is extracted from bytes 33 to 36 of NEWORDER.

03540 STMA 11,JDATE,MM,DD,YY
03550 LET DATE=YY*10000+MM*100+DD

A STMA 11 is used to extract the year, month, and day components of the date
and these are massaged into the format of ORDERS.ODATE

03600 LET ORD$[11,14]=CHR$(DATE,4)

and this is placed at the correct offset in the layout of the ORDERS record string

03610 LET MSGBUF$[32]=ORD$

which is placed in the message buffer string for submission to the U/SQL Server.

03620 RETURN

Here is an example of the results, using the UNIX Interactive U/SQL utility, usqli:

U/SQL> insert into neworder (ordno, custcode, odate) values("123456",
"TEST", "1997-05-06");

U/SQL> select * from neworder where ordno="123456";
 ORDNO CUSTCODE ODATE

 ----- -------- -----
 123456 TEST 1997-05-06

U/SQL> select * from orders where ordno="123456";
 ORDNO CUSTCODE ODATE
 ----- -------- -----

 123456 TEST 970506

Performance of the U/SQL Record Mapper

There is obviously a performance overhead in using the U/SQL Record Mapper, in
that each record read by the BBASIC ISAM Data Source Driver is first passed to
the U/BL program that remaps it before it is passed back to the Data Source
Driver.

The NEWSTOCK file, in the example above, with 5529 records gives a sample
comparison of using and not using the U/SQL Record Mapper:

Using the UNIX Interactive U/SQL utility, usqli, the following SQL queries were
issued:

�� select sum(stkvalue) from NEWSTOCK;

Transoft U/SQL User Guide

388

This query triggered the U/SQL Record Mapper and took 18 seconds to
process.

�� select sum(price) from NEWSTOCK;

This query did not trigger the U/SQL Record Mapper and only took 6
seconds to process.

Note: The print statements were removed from the sample U/BL server program
so that they would not influence the result.

Configure and Use

389

Retrieving the Record Number (R1) using SQLGetStmtOption

The following information is only useful if you are programming at the ODBC call
level interface.

If a new row is added to a table defined on a data record, it would be useful to
know what record number was given to the entry. This number can then be used
for the insertion of the key. This information can be retrieved using the
SQLGetStmtOption call. It has the following format:

RETCODE SQLGetStmtOption(hstmt,fOption,pvParam)

Where the arguments are as follows:

hstmt Statement handle. Must be the same handle as used for the
insert.

fOption Set this to 1001. This is a Transoft escaped call.

pvParam The record number is returned in this parameter.

The following example, using Visual Basic code, shows how a data record and
then a key may be inserted independently of each other. Locking will
automatically take place to provide data integrity

‘ Insert data record

INSERT1 = “insert into tab1 values (‘CUST 1’,2,4,6,0)”
SQLExecDirect(hstmt,INSERT1,len(INSERT1))
‘ Get the R1 of the inserted record

SQLGetStmtOption(hstmt,1001,r1)
‘ Insert the key
INSERT2 = “insert into idx values (‘CUST 1’,2,” + r1 + “)”
SQLExecDirect(hstmt,INSERT2,len(INSERT2))

Transoft U/SQL User Guide

390

Locking

In order to ensure that locking takes place between your ODBC-enabled
application and your U/BL, UBB or B32 system, the directive BBLockType must
be set.

On UNIX this is set in either the [Data Source Defaults] section or the UDD’s
[<Data Source>] section in the U/SQL Server usqlsd.ini configuration file. This
is located in the bin directory, below the base directory where the U/SQL Server
software was installed on the host, for example, /usr/usqls/bin.

On Windows this can be set using the U/SQL Administrator or the U/SQL Service
Manager.

BBLockType is defined as follows:

BBLockType=UBB|UBL|B32|NONE

The setting will depend on which product you are using.

�� The default, if BBLockType is not set, is UBB.

�� To ensure that no locking takes place, you must set the value to NONE.

The following is an example of the entries in the usqlsd.ini configuration file,
including BBLockType for U/BL locking:

[company.udd]

Directory=/u/data01
BBLockType=UBL
ReadOnly=Yes

Locking takes place at the record level immediately prior to a record being
updated or deleted via UPDATE and DELETE statements. However, the SELECT
FOR UPDATE statement only locks the current record and not the cursor of
records being updated. In order to ensure that all records are locked until the
transaction is complete, your own application must make use of a Named Cursor.

For Multiple-tier U/SQL, set the server Locktimeout= directive to -1 (the
default) to ensure that your application waits indefinitely on any lock set by any
other process or ODBC application.

Configure and Use

391

Setting Up a U/FOS Data Dictionary

Setting Up a U/FOS Data Dictionary

U/FOS is Transoft’s Open Systems version of Data General’s INFOS proprietary
hierarchical database management system. This section describes setting up a
UDD for U/FOS and applies only to Multiple-tier installations for both UNIX and
Windows NT Server platforms.

Note: Refer to the Overview and Creating a UDD sections for an overview of the
dictionary technology and the steps involved in creating a UDD.

Transoft U/SQL User Guide

392

Relational View of U/FOS Data

To provide a relational view of the data contained in a U/FOS database, you must
go through a two-step process:

1. You must analyze the database and define one or more SQL tables, each
of which represents a particular subset of the database.

2. You must define how each piece of data contained in the table is retrieved
from the U/FOS database.

Each SQL table is capable of representing any combination of data contained in
data records, keys or partial records. In addition, you can have things like the
feedback of a data record or the occurrence number of a key. It is possible to
create a single table that represents the entire U/FOS database. In general,
though, there should be a separate SQL table for each type of data record. This
table should also contain any key or partial record associated with the data
record. Once the layout of each table has been decided, you must specify the key
path needed to retrieve each piece of data contained in the table.

All this information is contained in the Universal File Dictionary (UFD). The
Universal Data Dictionary (UDD) is automatically created from the UFD. The UDD
contains details of the 'relational' tables and their column names that ODBC-
enabled products will 'see'.

Configure and Use

393

Universal File Dictionary Overview

The UFD is a collection of information contained in SQL tables which specifies the
layout of each SQL 'relational' data table and where to retrieve the information.
There are two main items that need to be described about each table: its data
objects and its indexes.

Each table is made up of one or more data objects where a data object is either
data from a data record, partial record, key or a special object type: occurrence,
feedback, link or subscript. Each object will be made up of one or more fields.
This information is sufficient to completely describe all the columns within the
table. These objects are discussed in the Data Objects section.

Each table will have one or more indexes attached to it. Each of these indexes will
be made up of one or more sub-index levels.

The following table contains a brief description of the contents of each table
within the UFD:

ufos_table Contains the name of each data table, the number of
components and the number of indexes.

ufos_tab_object Contains the name of each data object for each data
table. This name is used to extract further information
about the object from the ufos_object table.

ufos_index Contains the name of the index, the number of levels,
the name of the file containing the index and its pathid.

ufd_pathnames Stores the paths to the physical database files and is
used by the ufos_index table. It contains the
pathname and the pathid.

Transoft U/SQL User Guide

394

ufos_index_level Contains information about each level of each index.
There are two types of information for each level. The
first element of information concerns the components
that may be retrieved from that level. The second
element describes the attributes of the sub-index level,
such as whether or not sub-indexes are allowed and
whether duplicates are allowed.

ufos_object Contains information that applies to each data object:
the name, number of fields and type.

ufos_field Contains information about each field in each
component. The information stored about each field is:
field name, the COBOL picture string, the usage and
the value of it, if constant.

ufos_array_object Only used for arrays that are contained in separate
tables from the parent table. The information contained
is the name of each array and the level of nesting.

ufos_array_level Contains information about each level of each array
declared in the ufos_array_object table. The
information stored is:

�� the name of the table containing the array

�� the start offset

�� the size of each element

�� the number of elements.

Configure and Use

395

Review of the UFD Tables

This section reviews each of the UFD tables in turn:

�� ufos_table

�� ufos_tab_object

�� ufos_index

�� ufd_pathnames

�� ufos_index_level

�� ufos_object

�� ufos_field

�� ufos_array_object

�� ufos_array_level.

There is an example in the section, Example Data Dictionary.

ufos_table

This table contains data that applies to each table as a whole:

ufos_table

tabname char (18) Name of the table.

nind smallint Number of indexes attached to table.

nobj smallint Number of data objects in table

read_direct char (1) ‘Y’ if reading direct.

cond char (200) Conditional test to see if a record belongs
to table.

tabname is the name of the table that ODBC-enabled products will ‘see’. Table

names must be SQL compliant and satisfy the following conditions:

�� are in UPPERCASE

�� are within 18 characters

�� are unique

�� are not SQL keywords

�� are not zero length

�� are made up of 0-9, A-Z, _, with the first character alphabetic and with no
blanks.

If the read_direct field is set, the index structure is bypassed and records are
retrieved directly, which is a lot quicker. This does, of course, mean that all the
records in the database are retrieved for each sequential read.

The cond field is used to set a condition under which a data record belongs to the
specified table. The syntax of the condition is identical to that used for an SQL

Transoft U/SQL User Guide

396

WHERE clause search-condition (see the Expression Handling section). Set the
condition field if either of the following apply:

�� If the records are being read directly and there are several types of record in
the database.

�� If there several types of record in the same sub-index. See the Multiple
Record Types under the same Sub-Index section.

ufos_tab_object

This table is simply a list of the data objects in a specified table and the objno
field describes the ordering.

ufos_tab_object

tabname char (18) Name of the table to which the object
belongs.

objno smallint The sequence number of the object.

object char(16) The name of the object.

The object field is used to retrieve further information about the object from
other tables.

ufos_index

This table contains information that applies to each index as a whole.

ufos_index

tabname char (18) Table to which index belongs.

indno smallint Index identification number.

indname char(16) The name of the index.

nlevel smallint The number of sub-index levels that makes up
the index.

stop_lev smallint The sub-index level at which to stop searching
for further records.

filename char(33) The name of the physical file containing the
index.

pathid smallint The directory path number to the physical file.
The actual path is supplied in the
ufd_pathnames table.

nlevel contains the total number of sub-index levels contained in the index.

stop_lev is used when the same record type is contained in multiple sub-
indexes. The U/SQL Server U/FOS data source driver recursively backtracks up

Configure and Use

397

sub-index levels searching for further records. The number in this field indicates
that the search must not go beyond this level. If records are not kept in multiple
sub-indexes specify the first level (0).

It is recommended, for greater flexibility, that you set pathid to zero so that the
filename will be searched for down the Searchlist= entry in the U/SQL Server
directives rather than in the ufd_pathnames file; see the ODBC.INI Directives
section for further details.

ufd_pathnames

This table stores the paths to the physical database files and is used by the
ufos_index table, although as indicated above use of the Searchlist= directive
is preferable.

ufd_pathnames

pathname char(254) The directory path to the physical database
files.

pathid smallint The key number for the directory path.

UNIX

On UNIX platforms, each directory path entry can be one of the following:

�� The full path name to the directory where the file is located, for example,
/usr/datafiles.

�� The directory relative to the base directory where the data files are located
(for instance, /usr/datafiles). For example, suppose a particular data file is
in the directory /usr/datafiles/sales, then its relative path to the base
data files directory is sales.

Note: If the directory entries are of this type, there must be a
‘Directory=/usr/datafiles’ entry in the U/SQL Server configuration file,
usqlsd.ini.

�� The directory relative to where the U/SQL Server software resides. For
example, assume the U/SQL Server is started in /usr/usqls/bin and the
data file is in /usr/datafiles, the relative path is ../../datafiles.

Note: If the directory entries are of this type, there must be a ‘Directory=./’
entry in the U/SQL Server configuration file, usqlsd.ini.

Windows NT Server

Enter equivalent Windows NT Server path names, to those for UNIX, for example,
C:\DATAFILES.

ufos_index_level

This table describes which objects may be found at each level of an index.

ufos_index_level

Transoft U/SQL User Guide

398

indname char (16) Name of index to which this level belongs.

levno smallint The sequence number of the level.

key_obj char(16) The name of the key object to be found at this
level.

data_obj char(16) The name of the data record object to be
found at this level, if any.

partial_obj char(16) The name of the partial record object to be
found at this level, if any.

occurrence_obj char(16) The name of the occurrence number object to
be found at this level, if any.

feedback_obj char(16) The name of the object to be found at this
level, if any.

allow_subidx char(1) ‘Y’ if sub-indexes are allowed.

allow_dup char(1) ‘Y’ if duplicates are allowed.

allow_partial char(1) ‘Y’ if partial records are allowed.

max_key_len smallint Maximum key length; 0 if default.

first_key char(16) For system use only.

last_key char(16) For system use only.

There will always be a key object, key_obj, but the other objects can be left
unspecified if they do not exist or are not used. The other fields specify the
attributes of the sub-index, such as the maximum key length and whether or not
duplicates are allowed.

ufos_object

This table contains information that applies to each object as a whole.

ufos_object

objname char (16) Name of the object.

numfield smallint Number of fields in object.

objtype char(16) The type of the object.

Valid object types in objname are KEY, PARTIAL and DATA which describe data
stored in keys, partial records and data records. There are also the following
special object types: OCCURRENCE, FEEDBACK, LINK and SUBSCRIPT. These
objects are described in the Data Objects section.

ufos_field

Configure and Use

399

This table contains information about each field.

ufos_field

objname char (16) Name of the object that this field is a part of.

fldno smallint Sequence number of the field.

fldname char(30) Name of field.

picture char (18) COBOL picture expression for field.

fusage char (14) Usage of field.

fvalue char (18) Value for field. This is only used for fields that are
in selector objects.

offset char (4) Field offset for redefined fields only. If the field is
not a redefine, offset should be left blank.

fldname is the column (field) name that ODBC-enabled products will ‘see’.
Column names must be SQL compliant and satisfy the following conditions:

�� are in UPPERCASE

�� are within 18 characters

�� are unique

�� are not SQL keywords

�� are not zero length

�� are made up of 0-9, A-Z, _, with the first character alphabetic and with no
blanks.

If the name of the field fldname is FILLER, it will not appear in the UDD table.

Valid types for the field fusage are: DISPLAY, STRING, COMP, COMP-3 and
INDEX. This has been enhanced to introduce new data types, these are described
in Appendix C - U/FOS data type enhancements.

The fvalue field is only set if the field is part of a selector object.

ufos_array_object

This table is only used when an array is defined as a separate logical table to its
parent record:

ufos_array_object

name char(18) Name of array object.

nlevel smallint Number of nested levels.

There is one entry in this table for each array object, where an array object is
either a simple single-level array or a nested array.

ufos_array_level

Transoft U/SQL User Guide

400

This table contains information about each level of an array.

ufos_array_level

objname char (18) Name of array object to which this level belongs.

tabname char(18) The name of the table to which this array level
belongs.

levelno smallint The sequence number of the level.

start_offset smallint The byte offset of the start of the array level.

element_size smallint The size of an element in the array.

max_elements smallint The maximum size of the array.

The tabname field contains the name of the table that this array is attached to.
Further information can be found in the Array Handling section.

Configure and Use

401

Data Objects

All 'relational' SQL tables viewed by ODBC-enabled products are constructed from
one or more data objects. Each object represents a piece of data either contained
in the database itself or generated by the U/SQL Server U/FOS data source
driver. The following seven data object types are supported:

�� KEY: this object represents a U/FOS key.

�� SELECTOR: this object is the same as a key object but contains data that is
constant. This is used for selectors.

�� DATA: this object contains the data in a data record.

�� PARTIAL: this object contains the data in a partial record.

�� OCCURRENCE: this object contains the occurrence number of a key.

�� FEEDBACK: this object contains the feedback of a data record.

�� SUBSCRIPT: this object contains the subscript of the current element of an
array.

Transoft U/SQL User Guide

402

Indexes

An index attached to an SQL table is a composite of all the keys on the key path
to the data record or partial record. All the keys on this key path must be
contained in the table, otherwise you would not be able to find the location of the
data record. For example, assume you have an SQL table defined for the data
record in the following structure:

This table would have a single composite index made up of K1 and K2. If the
information contained in the keys was not duplicated in the data record, you
would also have to have K1 and K2 as objects in the table.

Configure and Use

403

Example Data Dictionary

You will now work through the creation of a data dictionary that represents the
following example database:

The data record has the following format, represented by the COBOL FD:

01 EMPLOYEE-REC.
 02 NUMBER PIC 9(4) COMP.
 02 SURNAME PIC X(20).

 02 ADDRESS PIC X(30).
 02 PHONE PIC 9(10).

The partial record has the following format:

01 JOB-TITLE-REC.

 02 MIN-PAY PIC 999 COMP-3.
 02 MAX-PAY PIC 999 COMP-3.

Let’s now see what the entries for each UFD table should be in the '.ufd' text file:

ufos_table (tabname,nind,nobj,read_direct,cond)

------------ -- -- -- ----------------

EMPLOYEE 3 2

JOB_TITLE 1 2

*

The table EMPLOYEE represents the EMPLOYEE-REC data record and the table
JOB_TITLE represents the JOB-TITLE-REC partial record.

The EMPLOYEE table is composed of two objects: the EMPLOYEE-REC data record
and the TITLE key. The TITLE key object is included because all key information
must be present in the table and the job title is not in the data record. The table
has three indexes: Number, Surname and Title + Number.

The JOB_TITLE table is composed of two objects: the JOB-TITLE-REC partial
record and the TITLE key. The TITLE key object is included because all key
information must be present in the table. The table has one index: Title.

It is not possible to read these records directly as you have no way of
differentiating between a data record and a partial record.

Note: The tabname names must be SQL compliant, see the previous section,
ufos_table. For example, the field separator character '-' is illegal in SQL syntax.
Use '_' instead.

The following table defines a name for each object in each table.

Transoft U/SQL User Guide

404

ufos_tab_object (tabname,objno,object)
------------ -- -----------

EMPLOYEE 1 EMPREC
EMPLOYEE 2 TLEKEY
JOB_TITLE 1 TLEKEY2
JOB_TITLE 2 JOBREC

*

The following table gives a name to each index, defines the number of sub-index
levels and specifies the name of the file containing the index. nlevel is set to zero
since you do not have multiple instances of the same sub-index type. Also
included is the pathid.

ufos_index (tabname, indno, indname, nlevel, stop_lev, filename,
pathid)

------------ -- -------- -- -- -------------- --
EMPLOYEE 1 NUMIDX 2 0 EMPLOYEE_FILE 1
EMPLOYEE 2 NAMIDX 2 0 EMPLOYEE_FILE 1
EMPLOYEE 3 TLEIDX 3 0 JOB_TITLE_FILE 1

JOB_TITLE 1 TLEIDX2 2 0 JOB_TITLE_FILE 1
*

The next table denotes the UNIX directory path where the database files may be
found, with the pathid number. Preferably use the Searchlist= directive, which
means setting pathid to zero in the ufos_index table.

ufd_pathnames (pathname, pathid)
-- --
/usr/usqls/data_files 1

*

The next table specifies which objects may be found at each level of each index.
From the above table you can see that duplicate surnames are allowed.

ufos_index_level (indname, levno, key_obj, data_obj, partial_obj,
occurrence_obj, feedback_obj, allow_subidx, allow_dup, allow_partial,
max_key_len)
-------- -- -------- -------- ------- ----- ----- - - - --

NUMIDX 1 NUMSEL
NUMIDX 2 NUMKEY EMPREC

NAMIDX 1 NAMSEL
NAMIDX 2 NAMKEY EMPREC Y

TLEIDX 1 TLESEL
TLEIDX 2 TLEKEY
TLEIDX 3 NUMKEY2 EMPREC

TLIDX2 1 TLESEL

TLIDX2 2 TLEKEY2 JOBREC Y
*

The next table defines the type of each object and the number of fields contained
in it.

ufos_object (objname,numfield,objtype)
---------- -- ----------

NUMSEL 1 SELECTOR
NAMSEL 1 SELECTOR
NUMKEY 1 KEY
NUMKEY2 1 KEY

NAMKEY 1 KEY
TLEKEY 1 KEY
TLEKEY2 1 KEY

Configure and Use

405

EMPREC 4 DATA
JOBREC 3 PARTIAL

*

The data object types, objtype, supported are detailed in the Data Objects
section .

The following table describes each field for each object. Notice that the fields for
the selector objects have the name as FILLER. This means that the selectors will
not appear as columns in the table when viewed by ODBC-enabled products. Also
notice that the value has been set for the selector fields.

ufos_field (objname,fldno,fldname,picture,fusage,fvalue)
-------- -- -------- ----- -------- ----------

NUMSEL 1 FILLER X(6) DISPLAY NUMBER
NAMSEL 1 FILLER X(7) DISPLAY SURNAME
NUMKEY 1 NUMBER 9(4) COMP

NUMKEY2 1 NUMBER 9(4) COMP
NAMKEY 1 SURNAME X(20) DISPLAY
TLEKEY 1 TITLE X(10) DISPLAY
TLEKEY2 1 TITLE X(10) DISPLAY

EMPREC 1 NUMBER 9(4) COMP
EMPREC 2 SURNAME X(20) DISPLAY
EMPREC 3 ADDRESS X(30) DISPLAY

EMPREC 4 PHONE 9(10) DISPLAY
JOBREC 1 MIN_PAY 999 COMP-3
JOBREC 2 MAX_PAY 999 COMP-3
*

Transoft U/SQL User Guide

406

Array Handling

Note: A detailed discussion on array handling is provided in the Handling Data
Arrays section.

When dealing with arrays, there are two choices: expand the array out into
multiple columns or define the array as a separate logical table. For small arrays,
it is probably best to expand them out, but large arrays must be put in a separate
table. Let’s now look at an example of how to define the array as a separate
table.

01 EXAMPLE-REC.

 03 CODE-KEY PIC 99.
 03 NAME PIC X(20) OCCURS 10.
 03 PREV-ADDR OCCURS 9 TIMES.
 05 FLAT PIC X(10).

 05 ROADS PIC X(10) OCCURS 3 TIMES.
 05 TOWN PIC X(10).

The above COBOL FD contains one single level array and a two-level nested
array. From this record, you want to be able to create three tables: a table
containing all elements of the NAME array, a table containing all elements of the
PREV-ADDR array and a table containing all elements of the ROADS array.

The first stage is to create entries in the various UFD table for all three data
tables:

ufos_table (tabname,nind,nobj,read_direct,cond)
------------ -- -- -- ----------------
NAME 1 2
ADDR 1 2
ROAD 1 2

*

ufos_tab_object (tabname,objno,object)
------------ -- -----------
NAME 1 NAME_REC

NAME 2 NAME_SUB
ADDR 1 ADDRREC
ADDR 2 ADDR_SUB
ROAD 1 ROADREC

ROAD 2 ROAD_SUB
*

ufos_index (tabname, indno, indname, nlevel, stop_lev, filename,
pathid)
------------ -- -------- -- -- -------------- --

NAME 1 NAMEIDX 1 0 EXAMPLE_FILE
ADDR 1 ADDRIDX 1 0 EXAMPLE_FILE
ROAD 1 ROADIDX 1 0 EXAMPLE_FILE

*

ufos_index_level (indname, levno, key_obj, data_obj, partial_obj,
occurrence_obj, feedback_obj, allow_subidx, allow_dup, allow_partial,
max_key_len)
-------- -- -------- -------- -------- ----- ----- - - - --

NAMEIDX 1 NAME_KEY NAMEREC
ADDRIDX 1 ADDR_KEY ADDRREC
ROADIDX 1 ROAD_KEY ROADREC
*

Configure and Use

407

There must also be a column to identify the element number of the array. This is
achieved by adding an object to the ufos_object table of type: SUBSCRIPT. This
object must contain a field for each level of nesting. In the example, the
SUBSCRIPT object for the NAME and ADDR tables would each contain one field,
whereas the object for the ROAD table would contain two fields. The fields, in the
ufos_field table, for the subscript objects must be numeric, must be long
enough to contain the highest subscript and must also have fusage DISPLAY.

ufos_object (objname,numfield,objtype)
---------- -- ----------
NAME_KEY 1 KEY
ADDR_KEY 1 KEY
ROAD_KEY 1 KEY

NAMEREC 3 DATA
ADDRREC 6 DATA
ROADREC 4 DATA

NAME_SUB 1 SUBSCRIPT
ADDR_SUB 1 SUBSCRIPT
ROAD_SUB 2 SUBSCRIPT
 *

When you come to defining the fields in the data record, though, there should
only be fields defined for the first element of the array: the rest of the elements
should be described as a FILLER field, which are not 'seen' by ODBC-enabled
products. Also, the key data item must be present in all the tables so that you
have a field to join them on. The entries for the data records in ufos_field table
are as shown below:

ufos_field (objname,fldno,fldname,picture,fusage,fvalue)
-------- -- -------- ----- ------- ----------
NAME_KEY 1 NAME X(20) DISPLAY

NAMEREC 1 CODE_KEY 99 DISPLAY

NAMEREC 2 NAME X(20) DISPLAY
NAMEREC 3 FILLER X(180) DISPLAY

NAME_SUB 1 SUB1 9(4) DISPLAY

ADDR_KEY 1 ADDR X(30) DISPLAY

ADDRREC 1 CODE_KEY 99 DISPLAY

ADDRREC 2 FILLER X(200) DISPLAY
ADDRREC 3 FLAT X(10) DISPLAY
ADDRREC 4 FILLER X(30) DISPLAY

ADDRREC 5 TOWN X(10) DISPLAY
ADDRREC 6 FILLER X(400) DISPLAY

ADDR_SUB 1 SUB1 9(4) DISPLAY

ROAD_KEY 1 ROAD X(10) DISPLAY

ROADREC 1 CODE_KEY 99 DISPLAY
ROADREC 2 FILLER X(210) DISPLAY

ROADREC 3 ROAD X(10) DISPLAY
ROADREC 4 FILLER X(410) DISPLAY

ROAD_SUB 1 SUB1 9(4) DISPLAY
ROAD_SUB 2 SUB2 9(4) DISPLAY
*

The next stage is to add entries to the ufos_array_object and
ufos_array_level tables. The ufos_array_object table contains an entry for

Transoft U/SQL User Guide

408

each array object, where an array object is either an elementary array or an
array with one or more levels of nesting. The column nlevel describes the level of
nesting. For the above example, the table is as follows:

ufos_array_object (name,nlevel)
---------- ---
NAME 1

ADDR 2
*

The ufos_array_level table describes each individual array within an array
object. The column table_name describes the name of the table to which the
array belongs. The rest of the columns describe the position and length of the
array. For the above example, the table is as follows:

ufos_array_level (obj_name, table_name, level, start_offset,
element_size ,max_elements)
-------- ---------- -- --- --- ----
NAME NAME 1 2 20 10
ADDR ADDR 1 202 50 9

ADDR ROADS 2 212 10 3
*

Configure and Use

409

Same record type Under Multiple Subindexes

In some databases, there will be records of the same type that are under several
sub-indexes. Take the following example structure:

In this case, you really want to view the bottom level sub-indexes as being joined
to form one big sub-index. The way you achieve this is by setting the stop_lev
field in the ufos_index table. The U/SQL Server U/FOS data source driver first
reads the data records under the bottom left-most sub-index. It then backtracks
and goes down the next sub-index.

It appears that the driver automatically performs what is required in this case.
The only problem is that, after the last bottom-level sub-index has been read, the
driver attempts to backtrack up to the first level and go down the next key path.
You do not want the driver to do this, as you know that there will be not be any
more data records of the required type. The way to stop this is to set the
stop_lev field to the sub-index level that you do not want to backtrack past. The
first level is level 0 so, in this case, set stop_lev to 1.

Transoft U/SQL User Guide

410

Multiple Record Types Under the Same Sub-index

In some databases, there will be records of different types that are under the
same sub-index. You would obviously represent each record type as a separate
logical table. The problem is how to know which record belongs to which table. To
solve this problem, there must be one or more fields which you can examine that
will tell you the record type. You can then specify an expression under which a
record belongs to a table. This expression or condition is placed in the cond field
of the table ufos_table and has the same grammar as an SQL WHERE clause
search-condition. See the Expression Handling section.

For example, suppose there are two records, Employee Master and Employee
Salary, under the same sub-index. They are distinguished from each other by the
REC_TYPE field being "M" and "S" respectively.

Thus, the cond expression would be:

REC_TYPE="M"

for the Employee Master table and

REC_TYPE="S"

for the Employee Salary table.

The ufos_table table entries would be as follows:

ufos_table (tabname,nind,nobj,read_direct,cond)
------------ -- -- -- ----------------

MASTER 1 10 REC_TYPE=“M”
SALARY 1 6 REC_TYPE=“S”
*

Configure and Use

411

Enterprise Join Engine

Enterprise Join Engine

The Transoft Enterprise Join Engine (EJE) creates a logical data source which
contains links to a number of physical data sources, either U/SQL or third-party
data sources, typically RDBMS, using an ODBC connection. This enables
distributed data, over multiple data sources, and/or multiple data sets of the
same data, for example, multiple companies as U/SQL enabled data, to be
presented as one logical database. This enables multiple U/SQL data sources
and/or multiple, disparate, non-U/SQL, ODBC-enabled data sources (such as
Informix, Oracle, SQL Server 7, and so on) to be joined together and queried as
one data source.

The EJE was introduced to tackle scenarios where customers wished to join data
in SQL Server 7 and U/SQL (see Figure 1). However, this had several problems,
notably that it was slow due to SQL Server 7 not asking the remote data sources
about indices, and that due to difficulties in the way the Linked Servers
mechanism worked it proved impossible for Transoft to support this interface for
anything other than a very limited read-only capacity.

Using the EJE (as shown in Figure 2) turns this scenario around and makes
U/SQL rather than SQL Server 7 the driving force, allowing Transoft control over
the link and therefore being able to solve the issues associated with Figure 1.
The EJE in conjunction with U/SQL is now responsible for optimising SQL queries
(leading to significantly improved results). This ensures full index use where
available, and allows a supported read-write interface, seamlessly joining the two
data sets (in this case ACUCOBOL U/SQL and SQL Server 7) in a reliable and
efficient fashion.

Transoft U/SQL User Guide

412

A key point of Figure 2 (and therefore the EJE in general) is that wherever data
is to be joined together between the two (or more) data sets, the EJE must be
the entry point into the system, allowing it to drive the queries.

Note: Many data sources can be joined together as one logical data source.
Figure 2 is designed to give a simple introduction to possible EJE configurations.
There is no limit to the number of data sources which may be joined.

Other uses of the EJE include:

�� Data pump

The data pump capability of the EJE allows data to be pumped from one
database to another using SQL commands (thus, enabling the conditional
selection of data to be transferred), and without the target database having to
have its own “data pump” capability.

�� Multi-company consolidation

If a customer has multiple UDDs (Universal Data Dictionaries) or multiple DSN
configurations to the same UDD (for example, multiple substitution strings), all
running under U/SQL, the EJE can be used to join across multiple companies.
For example, a customer list could be compared between two companies to
check which customers exist in both, or totals of combined business/accounts
could be compiled as if the database were one entity.

Configure and Use

413

Using the Enterprise Join Engine

Preparing to use the EJE

To use the Transoft Enterprise Join Engine take the following steps:

1. Using the U/SQL Service Manager create a Data Source entry for your EJE
Data Dictionary. See Creating a Data Source entry using the U/SQL Service
Manager section.

2. Specify the directive "createhjeudd=y" for your EJE data source:

3. Create a remote EJE UDD, called for example, EJE.UDD. This will have two
new system UDD tables over and above the standard. See the Creating a
UDD section.

4. Invoke the Transoft U/SQL Enterprise Manager.

U/SQL Enterprise Manager

When you invoke the Transoft U/SQL Enterprise Manager, the Transoft U/SQL
Enterprise Manager property sheet is displayed:

Transoft U/SQL User Guide

414

Specify the EJE.UDD from the pull down menu in the Join Engine DSN field,
and the Enterprise manager will connect to it:

This property sheet allows you to:

�� Add a Remote Data Source

�� Configure a Remote Data Source

�� Delete a Remote Data Source.

Configure and Use

415

Add a Remote Data Source

To add a remote data source click Add. The Add Remote Data Source property
sheet is displayed:

This property sheet contains three property pages:

�� General

�� Tables

�� Advanced.

General

By default the General property page is displayed. This General property page
contains the following fields:

Local

Data source
name

This is the data source name of the EJE server. In the above
example, it is "eje.udd".

Qualifier This mandatory field represents the qualifier section of the
name of this remote data source as it will appear when
connecting to the EJE. For example, if Qualifier is set to
"myqual" and Owner is set to "myowner" and a table
"customer" is imported (see Tables section below), the table
can be referenced as "myqual.myowner.customer". If
there is only one "customer" table it may still be referenced

Transoft U/SQL User Guide

416

as "customer".

This field cannot be amended after a Remote Data Source
has been added.

Owner This mandatory field represents the owner section of the
name of this remote data source. See Qualifier above for
details.

This field cannot be amended after a Remote Data Source
has been added.

Remote

Data source
name

This is the remote data source to be connected into the EJE.

This field cannot be amended after a Remote Data Source
has been added.

Qualifier This drop-down list provides a list of the qualifiers within the
remote data source. For U/SQL data sources it should be left
as "(None)". It is only required in the case where the remote
data source also splits its tables into multiple qualifiers. See
note in Tables section below.

This field cannot be amended after a Remote Data Source
has been added.

Owner This drop-down list provides a list of the qualifiers within the
remote data source. For U/SQL data sources it should be left
as "(None)". It is only required in the case where the remote
data source also splits it's tables into multiple owners. See
note in Tables section below.

This field cannot be amended after a Remote Data Source
has been added.

Connection
string

This field contains the connection string which was used to
connect to the Remote Data Source. Bear in mind that this
connection string represents that used from the local
machine, that is, where the Enterprise Manager is running,
not necessarily where the EJE is running. It may be amended
as appropriate to connect to the Remote Data Source.

Server type This drop-down list provides a list of the types of remote
data sources the EJE server is configured to work with. This
affects what properties the remote server is assumed to have
and how the SQL syntax can be treated. For example, some
remote data sources do not allow "SELECT FOR UPDATE"
queries.

Tables

Click the Tables tab. The Tables property page is displayed:

Configure and Use

417

This property page allows you to specify which tables you want to exclude from
your remote data source.

Note: The list of tables provided in this tab is based on the qualifier and owner
selected under the remote section on the General property page. If the remote
data source actually divides its tables into owners and/or qualifiers, then this list
will change depending on what is selected there. Always ensure that the list of
tables is as expected before clicking OK.

Advanced

Note: In normal operation it is recommended that you do not change any of
these fields.

Click the Advanced tab. The Advanced property page is displayed:

Transoft U/SQL User Guide

418

This property page contains the following fields:

Connection
factor

This allows tuning of performance and states how much
slower preparing a remote statement is than on the central
EJE server.

Read factor This allows tuning of performance and states how much
slower reading a row of data is on the remote server than
on the central EJE server.

Combinable This check box is used when multiple remote data sources
are connected, which actually correspond to a single
physical remote data source, just with multiple remote
qualifiers and/or owners. For example, two remote data
sources could link to a single SQL Server 7 database, one
with a remote owner of "a1" and one with a remote owner
of "a2" and a query combining the two could be joined as
in "select * from a1.table1, a2.table2". The Combinable
flag means that anything with the same qualifier will be
the same remote data source, and only one connection will
be opened to it. This flag is not required unless remote
qualifiers and owners are used, which is not normally the
case.

Configuring a Remote Data Source

Configure and Use

419

To configure a remote data source, select the data source and click the
Configure button on the U/SQL Enterprise Manager. The Add Remote Data
Source property sheet for that data source is displayed. This property sheet
contains the property pages and parameters described in the previous section
Add a Remote Data Source.

Deleting a Remote Data Source

To delete a remote data source, select the data source and click the Remove
button on the U/SQL Enterprise Manager. A confirmation prompt is displayed.
Click Yes to delete the data source.

Transoft U/SQL User Guide

420

Configuring the EJE on UNIX

The following steps allow you to configure and use the EJE on UNIX:

1. U/SQL version v4.00 is the earliest U/SQL release to support the EJE. If you
are not already running this version then you must first install this release on
your UNIX machine.

2. The U/SQL v4.00 Server must be licensed with an FMD66 (EJE enabled)
license that also specifies an SQL Access (UD) count.

3. In your U/SQL Server installation bin directory, edit the usqlsd.ini file, and
add the following directive to the [Data Source Defaults] section.

createhjeudd=y

The EJE depends on a series of specific UDDTABLE entries and the directive
above ensures they are created whenever a new UDD is created.

4. The U/SQL UNIX 'client' (libtsodbc) requires an ODBC.INI file so that
remote datasources can be located and identified. In the U/SQL bin directory,
create an ODBC.INI file and add your remote DSN entries.

For example, if you were connecting to another U/SQL Server on a different
UNIX machine, or in a different directory, then you would add the relevant
port and hostname details.

[eje1]

Server= <your server hostname>

Port=< server port number>

5. The EJE must also be able to determine what UNIX 'client driver' to use. This
is specified in an iodbc.ini file. If you were connecting to another U/SQL DSN
you would enter the following in the iodbc.ini file:

[ODBC Data Sources]

books.udd=Transoft Data Source

eje1=Transoft Data Source

[books.udd]

Driver=< U/SQL server install directory path
 >/sqlaccess/libtsodbc.so

[eje1]

Driver=< U/ SQL server install directory path
 >/sqlaccess/libtsodbc.so

[default]

Driver=< U/SQL server install directory path
 >/sqlaccess/libtsodbc.so

6. In order for the U/SQL Server to be able to locate the various configuration
elements and the U/SQL 'UNIX Client' you must set the following
environment variables PRIOR to starting the U/SQL Server on UNIX:

export ODBC_INI=`pwd`/ODBC.INI

export ODBCINI=`pwd`/iodbc.ini

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:< U/SQL server install
 base directory path >/iodbc

7. Start the U/SQL Server process:

Configure and Use

421

./start_serv.sh

8. The next step is to create the EJE.udd using the standard -c switch (using
usqli):

./usqli -c eje.udd

This data dictionary will 'house' all of your EJE remote tables and serves as a
single reference point.

9. Before you populate your EJE.udd with remote table information you must
add an EJE.udd DSN reference in your U/SQL Client Administrator.

The EJE.udd DSN entry must be created as a 'System' DSN.

10. After adding the U/SQL Administrator entry for the EJE.udd you can begin
the process of populating it with your remote table information.

Version 4.00 of the U/SQL Client installs the EJE Administrator within the
U/SQL program group (if you cannot locate it search for the EJEAdmin.exe.)

To begin adding information, open the EJEAdmin and connect to the eje.udd.

Click ADD and complete the fields as in the example below:

The Tables tab allows you to select which remote tables you wish to reference
in your EJE.UDD.

There should be no need, unless specifically instructed, to amend the
Advanced settings.

11. You can test whether you can connect to your EJE datasource by connecting
to your eje.udd in Win U/SQLi or usqli and running:

select top 1 * from eje2.books2.customer

Confirm the results (note the use of the Qualifier, Owner and tables name in
the SQL Syntax).

Transoft U/SQL User Guide

422

Configuring Multi-Datasource U/SQL EJE on UNIX

This section describes a series of steps that will allow you to configure and use
the EJE to co-join disparate data using two U/SQL Servers.

It describes:

�� The basic steps involved in using the EJE on UNIX

�� Configuring EJE to connect to multiple U/SQL Servers on UNIX.

The test scenario was based on:

�� Two U\SQL Servers on a single UNIX machine

�� C-ISAM and PRO-ISAM datasources.

�� The books.udd (and associated test data).

To configure and use the EJE to co-join disparate data using two U/SQL Servers,
take the following steps:

1. Install the U/SQL Version 4.00 PRO-ISAM release in a UNIX directory called,
pro400.

2. Install The U/SQL Version 4.00 C-ISAM release in a UNIX directory called,
cisam400.

3. When installed License both servers with with an EJE enabled license
(FMD66) and ensure each license has an SQL Access count (UD) count
specified.

4. In the USQL PRO400 BIN directory, edit the usqlsd.ini file and add the
following directive in the [Data Source Defaults] section:

createhjeudd=y <<<<---- add this

Also add the following new section within the file:

[eje1]

Dictionary=../example/books.udd

Directory=../example

5. In the CISAM400 directory, edit the usqlsd.ini file and add the following
EJE DSN entry within the [Data Source Defaults] section:

[eje2]

Dictionary=../example/books.udd

Directory=../example

6. Create a file in the U/SQL PRO400 bin directory called ODBC.INI. Edit the
file and add the following:

[eje1]

Server= <your server hostname>

Port=< PROISAM server port number>

[eje2]

Server=<your server hostname>

Port=< CISAM server port number>

Configure and Use

423

7. Create a file in the U/SQL PRO400 bin directory called iodbc.ini. Edit the file
and add the following:

[ODBC Data Sources]

books.udd=Transoft Data Source

eje1=Transoft Data Source

eje2=Transoft Data Source

[books.udd]

Driver=< PROISAM server install directory path
 >/sqlaccess/libtsodbc.so

[eje1]

Driver=< PROISAM server install directory path
 >/sqlaccess/libtsodbc.so

[eje2]

Driver=< PROISAM server install directory path
 >/sqlaccess/libtsodbc.so

[default]

Driver=< PROISAM server install directory path
 >/sqlaccess/libtsodbc.so

8. Return to the U/SQL PRO400 BIN directory and then run the following:

export ODBC_INI=`pwd`/ODBC.INI

export ODBCINI=`pwd`/iodbc.ini

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:< PROISAM server install
 directory

path >/iodbc

9. Start the PRO400 and CISAM400 server processes.

10. In the PRO400 bin directory, run:

./usqli -c eje.udd

This will create the eje.udd that will ‘house’ all remote table references.

11. In your USQL Client Administrator create System DSN's for:

eje.udd server = MyServer, port = < proisam server port number>

eje1 (do NOT specify .udd extensions) server = MyServer , port = < proisam
server port number>

eje2 server = MyServer, port = < cisam server port number>

12. Open the EJEAdmin (accessed from the U/SQL Client v4.00 program group)
and connect to the eje.udd. Click ADD and complete the fields as in the
example below:

Transoft U/SQL User Guide

424

ADD another reference as in the further example below:

13. Connect to your eje.udd in Winusqli and run:

Configure and Use

425

select top 1 * from eje1.books1.customer

and then

select top 1 * from eje2.books2.customer

and confirm the results.

Transoft U/SQL User Guide

426

Configuring U/SQL EJE Thin Client to Connect to the SQL
Server

This example was based on a UNIX based U/SQL Server connecting to SQL Server
7 on a Windows client machine. In addition, the U/SQL Server software was also
installed on the same machine as SQL Server 7 to act as the ‘Thin Client’.

For test purposes the books.udd CUSTOMER table was used as the primary
U/SQL and SQL Server table example.

1. Install the UNIX U/SQL version 4.00 server software on your UNIX Server.

2. Install the U/SQL Server version 4.00.0200 on your Windows
(NT/2000/XP Pro) client PC.

3. License both servers with theEJE enabled (FMD66) license with a (UD)
SQLACCESS Count.

4. In the U/SQL UNIX bin directory, edit the usqlsd.ini file, and add the
following to the [Data Source Defaults] section:

createhjeudd=y

5. Create a file in the U/SQL UNIX bin directory called, ODBC.INI. Edit the file
and enter the following:

[books.udd] <<<<<<< This is your UNIX based DSN

Server=sgsco506

Port=7000

[pro4] <<<<<<<<<<<<<< This is your Windows based SQL Server DSN

Server=aleahy <<<< This is the name of the windows machine hosting
U/SQL / SQL Server

Port=7001 <<<<<< This is the port number on which the U/SQL
Windows Server is running

6. Create a file in the U/SQL UNIX bin directory, called, iodbc.ini. Edit the file
and enter the following:

ODBC Data Sources]

books.udd=Transoft Data Source

pro4=Transoft Data Source

[books.udd]

Driver=/home/proj/support/aleahy/pro400/sqlaccess/libtsodbc.so

[pro4]

Driver=/home/proj/support/aleahy/pro400/sqlaccess/libtsodbc.so

[default]

Driver=/home/proj/support/aleahy/pro400/sqlaccess/libtsodbc.so

7. In the U/SQL UNIX bin directory run:

export ODBC_INI=`pwd`/ODBC.INI

export ODBCINI=`pwd`/iodbc.ini

export
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:<your_usql_base_directory_path>/i
odbc

Configure and Use

427

8. Start the U/SQL UNIX Server and create the EJE.udd:

./usqli –c eje.udd

9. On your client computer create a System DSN for your SQL Server Database
in the Microsoft ODBC Administrator:

On your client machine create a System DSN for your EJE.udd in the U/SQL
Administrator:

10. Open your EJE Administrator on your client machine and populate with DSN
entries for your U/SQL and SQL Server datasources:

U/SQL DSN

Transoft U/SQL User Guide

428

SQL Server DSN (manually edit connect string & add
RDSN=<sql_server_dsn> & edit SERVER=sql_servername)

Configure and Use

429

11. In the U/SQL Service Manager expand the Service entry and add a DSN
entry that mirrors your SQL Server ODBC DSN:

Start the U/SQL Service.

12. Using USQLi on UNIX, connect to the eje.udd and test the datasources:

$./usqli eje.udd

Interactive U/SQL Utility.

Copyright (c) Transoft Ltd. 1993-2003

Connected to server: [Engine v4.00.0103][PRO-ISAM v4.00.0000]

Opened: 'eje.udd'

U/SQL> select top 3 * from book1.eje1.customer;

CUSTCODE CUST_NAME CUST_REGION

-------- --------- -----------

C001 Alden & Blackwell OST

C002 Book Bargains Oxford WEST

C003 The Bookcentre WEST

3 records retrieved

U/SQL> select top 3 * from prov4.eje2.customer;

CUSTCODE CUST_NAME CUST_REGION

-------- --------- -----------

C001 Sein und Zeit OST

C002 Book Bargains Oxford WEST

C003 The Bookcentre WEST

3 records retrieved

Transoft U/SQL User Guide

430

Configuring U/SQL EJE for MS Access, MS Query or
Crystal Reports

To Link/Import tables from the EJE.udd in MS Access, MS Query or Crystal
Reports set Qualifier=# datasource defaults directive specific to the EJE.udd.

 Qualifier=#

If set all table owners will be produced by concatenating qualifier and owner with
the contents of this string. So if qualifier is set to # then a table q1.a1.customer
can be referenced as q1#a1.customer, and will appear in SQLTables() results as
being qualifier=NULL, author="q1#a1", tablename="customer".

Some front end applications have difficulty interpreting the connection string and
this directive addresses that.

Set the Directive in U/SQL Service Manager:

This will overcome the issue in MS Query (and Access) where tables are not
visible.

And in Crystal Reports as well.

Configure and Use

431

Transoft U/SQL User Guide

432

Advanced Use

Advanced Use of U/SQL Adapters

This section describes more advanced use and features of U/SQL, including:

�� Multi-company Support

�� Accessing the UDD system tables - This is useful in establishing the
available application tables and their columns.

�� Hints and tips

Configure and Use

433

Multi-company Support

U/SQL supports the concept of multi-company sets of data. For example, you
may have two sets of data that refer to Company01 and Company02. The layouts
of all the data files are the same, but some of the file names have differing
prefixes or suffixes, for example, LEDGER01 and LEDGER02 are the main ledger
files for the companies. In addition, the data files are in differing directories.

The UDD for the two companies would be the same, but the entry for the name of
the main ledger file, in the UDD, would be, say, 'LEDGER##'. In the ODBC.INI
settings there would be two data source entries, for example 'Company01' and
'Company02' with the same UDD but with differing file name substitution entries,
ensuring that the ledger file '##' characters are substituted by ' 01' and '02'
respectively. There would be a specific search list for each company's data files.

Consider the following example ODBC.INI settings:

[Company01]

Driver=C:\WINDOWS\SYSTEM\TSENG32.DLL

Description=Company 01

Dictionary=C:\Program Files\USQLC\COMPANY.UDD

DSDrivers=TSMF32

SearchList=F:\COMP01\

Substitution=##=01

[Company02]

Driver=C:\WINDOWS\SYSTEM\TSENG32.DLL

Description=Company 02

Dictionary=C:\Program Files\USQLC\COMPANY.UDD

DSDrivers=TSMF32

SearchList=F:\COMP02\

Substitution=##=02

Note: In this example, instead of using the Substitution option,
FileNameSuffix="01" and "02" respectively could be used to obtain the same
physical file name to open. But in this case, the file name in the UDD would be
'LEDGER' not 'LEDGER##'.

Transoft U/SQL User Guide

434

Issues and Limits

This section contains issues and restrictions that must be considered.

Note: Refer to the U/SQL Client software Release Notice, for any relaxation of
these limits or other issues.

�� Creating dictionaries from UFD text files - All Table names (for all data
sources) and Column names (for non-COBOL data sources) must be in
UPPERCASE

When creating the text file to define the UFD from which the UDD is
subsequently created ensure that all table and column names are in
UPPERCASE, otherwise unpredictable results may occur. This applies to all
non-COBOL data sources, see the relevant chapters in the Creating a Non-
COBOL Dictionary manual.

For COBOL data sources, only the table names must be in UPPERCASE.
Column names may be mixed case. Refer to the Setting Up a COBOL Data
Dictionary book.

Note: Non-COBOL column names are up to 18 characters, while COBOL
column names may be optionally up to 30 characters. Ensure your ODBC-
enable product(s) can cope with column names greater than the SQL standard
of 18 characters.

�� Check all UDD index entries

It is extremely important to check that entries for each index contain all the
key components in the correct order. Incorrect indexes will result in
unpredictable results and performance degradation. Refer to the Accessing
UDD System Tables section on how to interrogate the system index table
describing your application's indexes and their key components.

�� Improve the access performance of 'old' dictionaries

The access performance of dictionaries, created prior to revision 2.66 of
U/SQL, may be improved by being recreated. For non-COBOL data sources use
your existing UFD text file as described in the section Creating the UDD from
the UFD Text File.

For COBOL data sources you can export your existing UDD to a text file and
then import it into a new UDD as described in the section Exporting and
Importing your UDD.

�� Dictionary limits

A UDD can contain at least 2048 tables and each table can contain at least 512
columns. The largest SQL compliant character data type for a column is 254
bytes (this is an ODBC limitation). Alphanumeric fields larger than 254 must
be 'split' into multiple columns. This is automatically performed by the U/SQL
Manager for COBOL data sources.

�� Locking with SELECT FOR UPDATE statement

U/SQL provides explicit locking at the record level immediately prior to a
record being updated or deleted using UPDATE and DELETE statements.
However, the SELECT FOR UPDATE statement only locks the current record
and not the cursor of records being updated. In order to ensure that all
records are locked until the transaction is complete, your own application must
make use of a Named Cursor.

For Multiple-tier U/SQL, set the server LockTimeout= directive to -1 (the
default) to ensure that your application waits indefinitely on any lock set by

Configure and Use

435

any other process or ODBC application. Also set the client Timeout= directive
to zero (wait indefinitely) to ensure that it will not time out while waiting for a
response from the U/SQL Server.

Transoft U/SQL User Guide

436

Accessing the UDD System Tables

Using the Interactive U/SQL utilities, Win U/SQLi or UNIX based usqli, you can
access the UDD system tables to obtain a better understanding of their contents.
The table UDDTABLES contains details of all the UDD tables and you can obtain a
list of them by performing the following query:

select tabname from uddtables;

This retrieves, from the Books Wholesaler demonstration example Single-tier
booksw32.udd or Multiple-tier books.udd for a COBOL data source, the
following:

tabname

UDDTABLES
UDDCOLUMNS
UDDINDICES
UDDSOURCES
UDDVIEWS
UDDTABAUTH
UDDCOLAUTH
UDDUSER
UDDAUTH
ODBC_SPECIAL_COLUM
ODBC_TYPES
ODBC_STATISTICS
UFD_PATHNAMES
DICTIONARY_REVISIO
UDDLOG
GEN$$_TABLE
GEN$$_FILE
GEN$$_FIELD
GEN$$_INDEX
COBOL_TABLE
COBOL_FIELD
COBOL_INDEX
ARRAY_OBJECT
ARRAY_LEVEL
BUDGET
OLINE
ORDERS
STOCK
SALEHIST
CUSTOMER

30 records retrieved

All the tables following ARRAY_LEVEL are the application's tables. Differing data
sources will have similar tables to COBOL_TABLE, COBOL_FIELD and
COBOL_INDEX, for example C-ISAM has CISAM_TABLE, CISAM_FIELD and
CISAM_INDEX.

Most UDDs have the same remaining system tables, except for the Transoft
U/FOS database management system data source, where additional system
tables are required. For further details see the section Universal File Dictionary
Overview.

Configure and Use

437

In our 'Books' example, you use the following query to establish the application's
data tables:

select tabname from cobol_table;

which outputs:

tabname

STOCK
CUSTOMER
ORDERS
OLINE
SALEHIST
BUDGET

6 records retrieved

You use the following query to establish the columns in a particular data table:

select fldname from cobol_field where tabname="STOCK";

which outputs:

fldname

STKNUM
STOCK_TITLE
PUBLISHER
AUTHOR_NAME
CATEGORY
PRICE
QTY

7 records retrieved

And you use the following query to establish the indexes for a particular data
table:

select tabname, idxname, idxno, duplicates, fld1, fld2, fld3,
fld4 from cobol_index where tabname="STOCK"

This query outputs:

TABNAME IDXNAME IDXNO DUPLICATES FLD1 FLD2 FLD3 FLD4

------- ------- ----- ---------- --------- ---- ---- ----

STOCK STOCKK0 0 101 STKNUM - - -

STOCK STOCKK1 1 100 CATEGORY - - -

2 records retrieved

Where:

�� Index numbers, IDXNO, start from 0 (zero).

�� If duplicates index entries are allowed the DUPLICATES entry value is '100',
while for non-duplicates the value is '101'.

�� There can be up to 64 key components in each index, that is FLD1 to FLD64.

Summary of UDD System Tables

Transoft U/SQL User Guide

438

You can review the contents of each UDD system table using the Interactive
U/SQL utilities, Win U/SQLi or UNIX based usqli, by issuing a query of the form:

select * from <udd_table_name>;

The following is a summary of the contents of each UDD system table.

�� UDDTABLES

This table contains a list of all the tables contained in the UDD, with their
ownership, table ID, table type, number of columns, number of indexes and
number of rows (nrows).

You can affect how the Query Planner will operate by setting the value of
nrows.

�� UDDCOLUMNS

This table contains a list of column names for each table ID (defined in
UDDTABLES), with the column number within the UDD table, the column type,
its length, any decimal scale and whether or not it can contain 'null'.

�� UDDINDICES

This table includes for each index name, its owner, the table ID to which it
belongs, the index type, the number of component parts making the key and
column IDs for each of up to 64 parts.

�� UDDSOURCES

This table includes for each application data table its data source, for example
Micro Focus COBOL (defined as MF) or C-ISAM (defined as C-ISAM).

�� UDDVIEWS

This table is for future use.

�� UDDTABAUTH and UDDCOLAUTH

These tables are not used.

�� UDDUSER and UDDAUTH

These tables are optional for GRANT and REVOKE security. UDDUSER contains
each username and password combination. UDDAUTH contains the access
privileges of users to the application's tables and their columns. They can only
be viewed by the dba, Database Administrator. See the Security section.

�� ODBC_SPECIAL_COLUM, ODBC_TYPES and ODBC_STATISTICS

These table are for U/SQL internal use only.

�� UFD_PATHNAMES

This table contains a list of directory paths, where the first row has a pathid of
zero. This table is populated when a pathname is entered against a physical
data file. However, for greater flexibility it is recommended that pathnames
are not maintained in the UDD, but rather the Searchlist directive is used.

�� DICTIONARY_REVISIO

This table contains the revision of the UDD. An error message is displayed if
the UDD is 'too old' for the U/SQL Server.

If this is the case, then for non-COBOL data sources use your existing UFD text
file to recreate your UDD, with the latest revision number, as described in the
section Creating the UDD from the UFD Text File.

For COBOL data sources you can export your existing UDD to a text file and
then import it into a new UDD, with the latest revision number, as described in
the section Exporting and Importing your UDD.

Configure and Use

439

�� GEN$$_TABLE, GEN$$_FILE, GEN$$_FIELD and GEN$$_INDEX

These special UDD system tables cannot be accessed.

�� UDDLOG

This table contains the definition of the log file, usqlcs.log.

�� XXXXX_TABLE, XXXXX_FIELD and XXXXX_INDEX

These UFD tables have different names for 'XXXX' dependent on the data
source, for example, COBOL, CISAM, UFOS and BB.

XXXXX_TABLE contains each application table name and the corresponding
physical data file.

XXXXX_FIELD contains details of each column in each application table,
although there will be differing information dependent on the data source.

XXXXX_INDEX contains details of each application table's indexes.

Refer to the details in the above section Accessing UDD System Tables.

�� ARRAY_OBJECT and ARRAY_LEVEL

These tables are only available for certain data sources and contain repeating
group information, for example, COBOL OCCURS.

Transoft U/SQL User Guide

440

Hints and Tips

This section contains various miscellaneous hints and tips.

Improve UDD Performance

The directive, CacheNumPages, determines the size of the buffer pool cache (in
pages) that manages the UDD. For Single-tier U/SQL the default is 256 pages and
for Multiple-tier the default is 64 pages.

If you have a large UDD there may be benefit in increasing the value of
CacheNumPages. This reduces the number of times the U/SQL Server needs to
access the UDD from disk. This is likely to be a benefit particularly for Single-tier
installations.

However, with Multiple-tier installations you need to be careful since any increase
in the size of the CacheNumPages cache will be required by each child process.
This could also conflict with the more efficient operating system paging
mechanism.

SQLDriverConnect()

If you are creating applications that require GRANT and REVOKE usernames and
passwords to be processed, then this can be achieved by the ODBC function
SQLDriverConnect() which has been extended. Refer to the SQLDriverConnect()
section.

Create Tables in UDD

Although it is not possible to use the CREATE TABLE statement to create new
underlying data source tables, it is possible to create tables inside the UDD itself.

There are two type of table that can be created in the UDD:

�� Normal tables using the CREATE TABLE statement.

�� Temporary tables using the special CREATE TEMP TABLE statement. These
tables only exist for the length of the session, that is until the connection with
the UDD is dropped. It is also possible to re-issue a CREATE TEMP TABLE
statement for the same table name without first issuing a DROP TABLE
statement.

You can issue CREATE INDEX statements on both types of UDD table to improve
the subsequent access performance of the tables.

These tables can be useful as sometimes it is impossible to obtain a query directly
from the underlying application data.

The following is an example of both types of table created in the UDD and can be
invoked via the Interactive U/SQL utilities, Win U/SQLi or the UNIX, usqli:

create example tables and populate test data

--

create table emp (eno integer, name char (20));

create table empadd (eno integer, addr char (20));

create table emptel (eno integer, telno char (10));

insert into emp values (1,'Jim Smith);

Configure and Use

441

insert into emp values (2,'Fred Bloggs');

insert into emp values (3,'Jimmy Hall');

insert into emp values (4,'John Cannon');

insert into emp values (5,'Fred Jones');

insert into empadd values (1,'1 High St');

insert into empadd values (3,'2 Any Road');

insert into empadd values (5,'The Big House);

insert into emptel values (1,'123 4562');

insert into emptel values (2,'456 7891');

create temporary (only this session) tables

and insert each outer join (EMP X EMPADD) and (EMP # X EMPTEL) into
them

--

create temp table temp1 (eno integer, addr char (20));

create temp table temp2 (eno integer, telno char (20));

insert into temp1 select emp.eno,addr from {oj emp left outer join
empadd on empadd.eno=emp.eno};

insert into temp2 select emp.eno,telno from {oj emp left outer join
emptel on emptel.eno=emp.eno};

finally this is the query which is the join of EMP # with the 2
outer-joins

--

select emp.eno,name,addr,telno from emp,temp1,temp2

where temp1.eno=emp.eno and temp2.eno=emp.eno;

Selection of Numeric columns defined as type CHAR

When a WHERE clause contains a COLUMN=<numeric> component and the
COLUMN is of type CHAR, the numeric is converted to alpha, right justified and
space filled to the column width.

If a numeric type field is re-defined over an alpha field and the alpha field is in
the key then a special $MAP entry in the record expression for a table will 'map'
the numeric field to the alpha field in the WHERE clause. For example, assume:

rectype = 2 and $MAP (KEYN, KEYA)

in the record expression then any reference to KEYN=123 will be silently
translated into KEYA=123. This solves the problem of Microsoft Query 'wrapping'
the numeric value in quotes.

Division by Zero

Normally an error is returned when division by zero occurs. However, it is
possible to specify a return value of either zero or NULL. This is achieved via a
directive DivZeroRtn in either the [Data Source Defaults] section for Multiple-
tier, [Transoft U/SQL Defaults] section for Single-tier and/or in a specific
[<data_source_name>] section, with the specific entry taking precedence.

The valid entries are:

DivZeroRtn=0 - for a return of zero

Transoft U/SQL User Guide

442

DivZeroRtn=1 - for a return of a NULL

DivZeroRtn=9 - error returned

Configure and Use

443

Troubleshooting

Troubleshooting

This section describes error messages that can be displayed and checks and tests
that you can undertake to attempt to remedy problems.

A facility has been added to the U/SQL Client based Interactive U/SQL utility, Win
U/SQLi, that allows you to easily query the log file, usqlcs.log in which you can
determine the level of messages and the details required.

It is recommended you read the Release Notes from the U/SQL Client program
group on your PC and, for Multiple-tier UNIX versions, the README file in the
base directory of your U/SQL Server software installation directory, by default
/usr/usqls. Use either:

more README : to display it, or

lp README : to print it

For Multiple-tier Windows NT Server versions, read the U/SQL Server Release
Notes in the U/SQL Adapters program group.

These Release Notes and README file may provide further information and
assistance not provided with this Help file.

Note: If you are having problems using the U/SQL Manager, for COBOL data
sources only, then refer to the U/SQL Manager Error Messages section.

If you have problems with your U/SQL Client or Server licensing, then refer to the
Licensing section.

Introduction

If you are having problems:

1. Check your PC system requirements: see Chapter 3, How to Install the Single
or Multiple-tier U/SQL Client in the Installation & Licensing guide for
information.

2. Ensure you have set up the U/SQL Client directives and, for Multiple-tier, the
U/SQL Server directives: see Chapters 2 and 3 of this manual for Single-tier
and Multiple-tier respectively.

3. Ensure that U/SQL Server is running (Multiple-tier versions): see Chapter 4 of
this manual.

4. The next section 32-bit U/SQL Administrator Test & Review Facilities provides
useful assistance.

You can test connect to a UDD to ensure you have setup the directives
correctly, before attempting to use an ODBC-enabled product. If you fail to
connect details of the connection failure are displayed. You can view the ODBC
drivers installed to ensure you have the correct one(s) installed. You can
invoke the System & File Information utility, that provides information to check
that your U/SQL Client is installed successfully.

5. Refer to the following parts in this section, according to the problem you
have:

�� Problems Getting Started with an ODBC-enabled Product

Transoft U/SQL User Guide

444

�� COBOL and General Issues

�� PC Configuration, TCP/IP Connectivity and Your Network

�� Error Messages, the Log File and How to Query it

�� SQL Error Messages.

445

Appendices

Appendix A - Support Information

For support and information on this and other Transoft products and services,
contact Transoft:

Transoft Atlanta, GA

1165 Northchase,
Suite 375
Marietta
GA 30067
USA

Tel: +1 (770) 933 1965
Fax: +1 (770) 933 3464

Transoft Dayton, OH

7333 Paragon

Suite 250
Dayton
OH 45459
USA

Tel: +1 (937) 438 5553
Fax: +1 (937) 438 5377

Transoft UK

Transoft House
5J Langley Business Centre
Station Road
Langley
Slough
SL3 8DS
England

Tel: +44 (0) 1753 778880
Fax: +44 (0) 1753 773050

Please use email to contact us wherever possible:

Europe, Middle East and Africa: uksupport@transoft.com

America and Rest of the World: ussupport@transoft.com

Web site: www.transoft.com

Transoft U/SQL User Guide

446

Appendix B - Sample License Form

Appendices

447

Appendix C - U/FOS data type enhancements

The following data types have been introduced into the U/FOS Data Source
Driver:

�� DG Julian - The Julian Year 2000 date format is the Data General variant
based on the number of days since 31 Dec 1967 in a 4 byte and 2 byte
computational field. This date is the output of the COB-FDAY call in the
AIM extension library and gives valid results between,1 Jan 1968 and 31
Dec 2145

�� YYMMDD - The six digit date format. The FixedDateOffset=nn directive
is supported. This allows you to define a ‘cut-off’ year below which dates
with two digit years are considered to be in the 21st century. The directive
can be set in either the data source default section of the usqlsd.ini
configuration file for UNIX platforms or in the USQLSD.INI Registry
folders for Windows NT Server

�� CCYYMMDD - The fully compliant Year 2000 date format.

To make use of this new functionality, you must modify the ufos_field section of
the U/FOS UFD file as illustrated below:

objname fldno fldname picture fusage

UF85IX 1 FLD1 YYMMDD DATE(S6)

UF85REC 1 FLD1 YYMMDD DATE(S6)

UF85REC 2 FLD2 YYMMDD DATE(S6)

UF85REC 3 FLD3 CYYMMDD DATE(S8)

UF85REC 4 FLD4 S9(9) DATE(CDAY)

UF85REC 5 FLD5 S9(4) DATE(CDAY2)

UF85REC 6 FLD6 X(15) DISPLAY

Transoft U/SQL User Guide

448

Appendix D - ACUCobol Configurable Variables

Following is a current list of configurable variables that may be set:

CARRIAGE_CONTROL_FILTER tinyint

COMPRESS_FACTOR tinyint

DUPLICATES_LOG string

EOL_CHAR tinyint

LOCKED_RECORD_DELAY† short

LOCKING_RETRIES† short

LOCKS_PER_FILE short

LOGGING bool

LOG_BUFFER_SIZE short

LOG_DEVICE bool

LOG_DIR string

LOG_ENCRYPTION bool

LOG_FILE string

MAX_FILES short

MAX_LOCKS short

NO_LOG_FILE_OK bool

OPEN_FILES_ONCE‡ bool

REL_DELETED_VALUE short

TRX_HOLDS_LOCKS bool

USE_LARGE_FILE_API‡ bool

V_BASENAME_TRANSLATION bool

V_BUFFERS long

V_BUFFER_DATA bool

V_BULK_MEMORY long

V_CACHE_FLUSH_PERCENT short

V_FORCE_OPEN bool

V_INDEX_BLOCK_PERCENT short

V_INTERNAL_LOCKS bool

V_LOCK_METHOD short

V_MARK_READ_CORRUPT bool

V_NO_ASYNC_CACHE_DATA bool

V_READ_AHEAD bool

V_SEG_SIZE long

V_STRIP_DOT_EXTENSION bool

V_VERSION short

WAIT_FOR_ALL_PIPES bool

Appendices

449

Appendix E - MFOCUS Configurable Variables

No U/SQL directives are required to set this. Following example shows how
configurable options may be set.

Set system variable EXTFH to contain a full path of the MF file handler
configuration file.

 EXTFH = C:\windows\system32\myextfh.cfg

The File Handler configuration file enables you to alter File Handler parameters for
individual files, or for all files. Settings which apply to all files are listed under the
tag:

[XFH-DEFAULT]

while settings which apply to an individual file are listed under the individual
filename, for example:

[TEST.DAT]

The settings for an individual file override the global settings.

--

Note: If you have duplicate name=value pairs under a [tag] in your File Handler
configuration file, then only the first entry is used.

--

For more information on Configuration options see:

http://supportline.microfocus.com/documentation/books/sx20books/fhcnfg.htm

451

Printed Documentation

To view a printable pdf version of this online Help file, click the following button:

This will launch the Adobe Acrobat Reader, which will display the pdf version of
this online Help file. To print the file either:

�� Select the Print command from the File menu

�� Click the Print icon on the toolbar.

Note: If you downloaded the USQL_Help.chm online Help file from the Transoft
Website, you need to also download the USQL_User_Guide.pdf file into the
same directory, to benefit from the functionality described above.

453

Index

[

[<Data_source_name>] Section 148

[Transoft U/SQL Configuration]
Section................................. 140

[Transoft U/SQL Defaults] Section
... 143

2

2-user Temporary License41, 52

A

Access Methods Supported 257

Accessing the UDD System Tables
... 441

ACUCOBOL Vision 4 data files 353

Advanced Directives.................. 150

Advanced Use

U/SQL Adapters..................... 437

Advanced Use 437

Advanced Use of U/SQL Adapters 437

AlternativeIndex (Directive)....... 203

Amending

Data Dictionary 351

Amending................................ 351

Amending the Data Dictionary... 229,
351

Array Elements

Mapping 237

Array Elements237, 240, 344

Array Handling 411

B

BBASIC ISAM Data Dictionary

Defining 376

BBASIC ISAM Data Dictionary 376

BBLockType (Directive) 395

BecomeUser (Security Directive) 187

BETWEEN Predicate 233, 260

Business BASIC Data Dictionary . 375

C

CacheNumPages (ODBC.INI
Directive) 140

CachePageSize (ODBC.INI Directive)
... 140

CacheTables (Directive)............. 203

C-ISAM Data Dictionary............. 357

C-ISAM Data Types................... 364

Client License................ 36, 52, 277

Client ODBC.INI Directives......... 278

Client Software

Installing12

Client Software......4, 10, 12, 36, 52,
108, 109, 126, 149, 171, 215,
229, 278, 349, 439

COBOL ..1, 4, 10, 12, 36, 41, 42, 79,
81, 86, 94, 98, 106, 107, 108,
119, 121, 126, 137, 140, 143,
150, 161, 166, 182, 185, 192,
203, 215, 229, 236, 237, 240,
253, 255, 258, 262, 265, 267,
268, 273, 274, 276, 280, 285,
288, 290, 292, 310, 312, 314,
317, 318, 326, 333, 338, 339,
344, 349, 353, 398, 400, 408,
411, 439, 441, 448

COBOL FD Converter Error Messages
... 333

COBOL FD File

Selecting............................... 285

COBOL FD File.......................... 285

COBOL Level140, 292

COBOL UDD

Manually Creating 338

COBOL UDD............................. 338

COGNOS Impromptu Outer Join
Directives.............................. 160

COGNOS Impromptu support for
outer joins 150

Comma Delimited UFD File......... 339

Comparison Predicate... 67, 233, 260

Configuring the EJE on UNIX 425

createhjeudd (Directive) 418

Creating

New Data Dictionary............... 280

Transoft U/SQL User Guide

454

UDD..................................... 229

Creating........................... 229, 280

Creating a Dictionary 280

Creating a UDD... 80, 229, 253, 268,
273, 277, 280, 333, 357, 375, 396

Creating the UDD from the UFD Text
File 229, 386

D

Data Arrays

Handling............................... 236

Data Arrays236, 237, 246

Data Dictionary

Amending............................. 351

Data Dictionary ... 1, 10, 74, 81, 121,
143, 187, 192, 215, 227, 229,
253, 255, 273, 274, 280, 292,
317, 322, 330, 333, 338, 339,
351, 357, 358, 364, 376, 397,
408, 418, 425, 439

Data Objects..............398, 406, 408

Data View................................ 310

Database Administrator..... 186, 192,
441

Dealing with Multiple 01 Level
Records................................ 258

Define Fields (Columns) 344

Defining

BBASIC ISAM Data Dictionary . 376

C-ISAM Data Dictionary.......... 358

COBOL Data Dictionary........... 339

NULL Columns....................... 264

Defining264, 339, 358, 376

Defining a BBASIC ISAM Data
Dictionary............................. 376

Defining a C-ISAM Data Dictionary
... 358

Defining a COBOL Data Dictionary
... 339

Defining Datatables 341

Defining NULL Columns (Fields).. 264

Delete an Existing Table 325

Demonstration application10, 12, 79,
86, 215

Descending Keys 358

Description (ODBC.INI Directive) 148

Dictionary (ODBC.INI Directive).. 143

Distinct Jump (Directive) 203

Driver (ODBC.INI Directive) 148

DSDrivers (INI Directive)........... 148

E

EJE416, 418, 425, 427, 431, 435

Entering the ODBC.INI Directives..81

Enterprise Join Engine

Using.................................... 418

Enterprise Join Engine416, 418

Error Message File (usqlcs.msg) . 166

Error Messages......4, 12, 36, 47, 52,
126, 140, 143, 166, 192, 441

Error Reporting Format.............. 166

Example Data Dictionary............ 408

Existing Table

Delete 325

Existing Table.............324, 325, 326

Exporting and Importing your UDD
....................................126, 330

Expression Handling.................. 233

Expression Handling Syntax 260

Expression Syntax 233

Expressions on Columns and Virtual
Columns 265

F

FHPassword (ODBC.INI Directive)140

FHREDIR (ODBC.INI Directive) ... 140

FHUsername (ODBC.INI Directive)
... 140

Field (Column) Names 262

File Data Sources........................74

File Details............................... 314

File DSN74

File DSNs...................................74

FileNamePrefix (ODBC.INI Directive)
... 143

FileNameSuffix (ODBC.INI Directive)
... 143

Fileshare............ 140, 150, 182, 353

FixedDateOffset (ODBC.INI
Directive).............................. 143

Index

455

Flattened Arrary 236

Flattened Array237, 239, 240

ForceSimilarIndex (Directive)..... 203

Foreign Character Set Support 98,
143, 149

G

GRANT and REVOKE Security 126,
166, 192, 227, 441

Grant/Revoke security 192

H

Handling of Data Arrays 236

HideSystemTables (ODBC.INI
Directive) 143

I

Indexes67, 116, 119, 126, 140, 150,
170, 171, 192, 198, 203, 213,
229, 236, 237, 240, 253, 255,
257, 268, 285, 288, 292, 312,
314, 317, 318, 321, 330, 338,
339, 341, 344, 348, 349, 353,
357, 358, 374, 376, 386, 398,
400, 407, 408, 416, 439, 441

IndexStats (Directive)............... 203

Installation and Licensing U/SQL 3

Installing

Client Software........................ 12

Multiple-Tier U/SQL Server 4

Server License......................... 42

Single or Multiple-tier U/SQL client
.. 10

U/SQL Server License............... 41

Installing...............4, 10, 12, 41, 42

Installing the Client Software 12

Installing the Multiple-tier U/SQL
server 4, 10

Installing the Server License on UNIX
Platforms................................ 42

Installing the Server License on
Windows NT Server.................. 47

Installing the Single or Multiple-tier
U/SQL client.....................10, 448

Installing the U/SQL Server License4,
41, 52

Interactive U/SQL Utilities 10, 41, 79,
108, 109, 126, 143, 161, 166,
192, 229, 330, 349, 386, 431, 448

Issues 4, 41, 106, 121, 143, 182,
186, 192, 236, 292, 353, 386,
416, 435, 439, 441, 445, 448

Issues and Limits...................... 439

J

JDBC Client 136

JDBC Driver Support 136

K

Keys Definition312, 314

L

License Form (sample) 452

Licensing35

LIKE Predicate............. 67, 233, 260

Limits.. 52, 110, 113, 121, 187, 198,
240, 251, 292, 312, 333, 357,
416, 439

Line Sequential...........257, 314, 341

Linking External File Handlers..... 107

Lockdown security 187

Locking.................................... 185

Locking under U/BL................... 395

Log File Messages 161

Log Levels ...30, 121, 140, 161, 166,
278

LogFileDir 86, 102, 140, 161

LogFileDir (ODBC.INI Directive).. 140

Logical Operators...............233, 260

Logival Operators...................... 260

LogLevel86, 102, 140, 149, 158,
161, 166

LogLevel (ODBC.INI Directive) ... 140

M

Manipulate

Data..................................... 290

Manipulate...63, 170, 171, 215, 229,
253, 263, 265, 290, 292, 339,
358, 386

Manually Creating a COBOL UDD265,
338

Mapping

Array Elements...................... 237

Mapping 237

Mapping Array Elements to a
Relational Model 237

Transoft U/SQL User Guide

456

Micro Focus COBOL Fileshare 353

Micro Focus COBOL Specific Issues
... 106

Modifying

UDD..................................... 321

Modifying 321

Modifying a UDD . 81, 143, 292, 310,
321

MsgFileDir86, 102, 140

MsgFileDir (ODBC.INI Directive) . 140

Multi-Byte NULL Expressions for
COBOL data types.................. 353

Multi-company Support 438

Multiple Record Types Under the
Same Sub-index.................... 415

Multiple-tier model of U/SQL.... 3, 63

Multiple-tier Security...126, 187, 192

Multiple-tier Security - User
Connection 187

N

Nested OCCURS .237, 246, 253, 268,
292

New Data Dictionary

Create.................................. 280

New Data Dictionary74, 121, 253,
280

NewDictionaryDir..........86, 102, 140

NewDictionaryDir (ODBC.INI
Directive) 140

Newline................................... 257

NULL Columns

Defining 264

NULL Columns.......................... 264

Num2Char (ODBC.INI Directive). 140

O

OCCURS.... 237, 239, 240, 246, 253,
258, 268, 280, 288, 292, 312,
314, 344, 411, 441

OCCURS depending 237

OCCURS Depending on....... 246, 268

OCCURS Flattened Out into
Individual Unique Fields.......... 268

ODBC.... 1, 3, 10, 12, 36, 57, 63, 67,
73, 74, 79, 80, 81, 94, 98, 101,

108, 116, 121, 126, 137, 139,
140, 149, 150, 160, 166, 170,
171, 182, 192, 215, 222, 233,
251, 263, 278, 280, 292, 333,
394, 416, 425, 427, 431, 439,
445, 448

ODBC Access to Non-relational Files
...63

ODBC API conformance67

ODBC Compliance.......................67

ODBC Components......................63

ODBC Error Handling................. 166

ODBC Error Messages................ 333

ODBC Overview..........................63

ODBC.INI Directives

Entering..................................81

ODBC.INI Directives...... 79, 81, 108,
137, 333

ODBCVer 140

ODBCVer (ODBC.INI Directive)... 140

ODOSLIDE ..268, 280, 292, 314, 341

Open an Existing Data Dictionary 322

Open DataBase Connectivity63

OpenExclusive (ODBC.INI Directive)
... 143

P

Parallel OCCURS 237, 246, 253, 268,
292

PartialIndex (Directive).............. 203

Pattern Syntax233, 260

PICTURE...........................292, 333

Q

Query

Loading 118

Saving.................................. 118

Query......1, 10, 24, 30, 67, 79, 108,
109, 110, 113, 116, 118, 119,
121, 126, 143, 149, 150, 161,
170, 171, 181, 182, 185, 186,
192, 198, 203, 213, 215, 222,
229, 233, 239, 240, 246, 255,
260, 264, 280, 292, 344, 349,
374, 376, 386, 416, 418, 435,
441, 445, 448

Query Plan

Affecting 198

Index

457

selecting............................... 198

Viewing 198

Query Plan. 110, 113, 126, 150, 198,
203, 213

Query Planner

Tuning.................................. 203

Query Planner........ 1, 198, 203, 213

Query Planner Hinting............... 213

Querying and Manipulating Data. 171

Querying the Log File.109, 110, 113,
161, 229, 448

R

READ_ONLY Views.................... 179

ReadOnly (ODBC.INI Directive) .. 143

READ-ONLY Views 170

Record Number

Retrieving............................. 394

Record Number ..333, 344, 374, 376,
394

Record Number Access

Support 374

Record Number Access.............. 374

REDEFINES. 253, 255, 267, 288, 292

Relational View

U/FOS Data 397

Relational View 1, 227, 397

Relational View of U/FOS Data ... 397

Rename an Existing Table.......... 324

Rename Table Names 287

Repeating Group .236, 246, 268, 441

Repeating Groups......233, 237, 240,
268, 292

Representing COBOL Data . 253, 255,
274

Retrieving

Record Number (R1) using SQLGet
.. 394

Retrieving................................ 394

Return/newline......................... 257

Review

UFD Tables 400

Review...36, 79, 108, 288, 353, 400,
441, 448

S

Same record type Under Multiple
Subindexes 414

Sample License Form36, 452

Sample Queries 171

SearchList (ODBC.INI Directive) . 143

Security.....24, 30, 86, 92, 102, 117,
126, 140, 158, 186, 187, 192

Security (ODBC.INI Directive) 150

Security (Security Directive) 187

Security Directive 158

Security directives 150

SecurityFile (ODBC.INI Directive) 150

SecurityFile (Security Directive).. 187

SecurityFile Directive................. 158

Selecting

COBOL FD File 285

Selecting 285

Server License

Installing on Windows NT..........47

Server License..........42, 47, 52, 101

Service Manager..................20, 203

SetInIndexUse (Directive).......... 203

Setting Up the UNIX usqlsd.ini File
... 102

Single-tier installation files...........79

Single-tier model of U/SQL....... 3, 63

SQL conformance........................67

SQL Error Messages 166

SQL grammar coverage67

SQL Syntax Supported 170

SQLGetStmtOption...............67, 394

start_serv.sh script, UNIX.......... 101

Starting and Stopping the UNIX
Server 101

Starting the U/SQL Manager253, 278

stop_serv.sh script, UNIX 101

StripUnprintable (ODBC.INI
Directive).............................. 143

Structure View290, 292

Substitution (ODBC.INI Directive)143

Support

Transoft U/SQL User Guide

458

ACUCOBOL Vision 353

Support1, 4, 10, 61, 63, 67, 74, 109,
116, 117, 119, 126, 136, 140,
149, 150, 160, 170, 171, 179,
182, 192, 203, 222, 227, 229,
233, 236, 239, 240, 246, 251,
257, 260, 268, 280, 292, 310,
333, 353, 357, 358, 364, 374,
375, 376, 386, 406, 408, 416,
425, 451, 453

Support for Record Number Access
... 374

Support Information 451

Sustem Data Source 73

System and User Data Sources 73

T

Table and column names error
messages 333

TempDir (ODBC.INI Directive).... 143

TempTablePages (ODBC.INI
Directive) 140

The Query Planner.....110, 113, 126,
198, 203, 213, 344, 358

Transaction Processing.............. 182

Transaction Processing Syntax ... 182

TranslationDLL (ODBC.INI Directive)
... 143

TranslationFile (ODBC.INI Directive)
... 143

TranslationName (ODBC.INI
Directive) 143

TranslationOption (ODBC.INI
Directive) 143

Transoft 1, 4, 12, 52, 63, 67, 81, 94,
126, 136, 137, 160, 161, 166,
203, 213, 278, 394, 416, 418,
425, 427, 431, 441, 445, 451, 457

Troubleshooting 448

TrueSFU (Directive) 185

TrueSFU (ODBC.INI Directive).... 143

Tuning

Query Planner 203

Tuning 203

Tuning the Query Planner 203

U

U/FOS Data

Relational View...................... 397

U/FOS Data396, 397, 400, 406, 414,
453

U/FOS Data Dictionary 396

U/FOS data type enhancements.. 453

U/SQL1, 3, 4, 10, 12, 20, 24, 30, 35,
36, 41, 42, 47, 52, 57, 63, 67, 74,
79, 80, 81, 86, 92, 94, 98, 101,
102, 106, 107, 108, 109, 119,
121, 126, 136, 137, 140, 143,
149, 150, 161, 166, 170, 171,
179, 182, 186, 187, 192, 198,
203, 213, 215, 222, 227, 229,
233, 236, 240, 251, 253, 255,
257, 258, 260, 262, 263, 264,
268, 273, 274, 277, 278, 280,
288, 292, 312, 314, 319, 321,
322, 330, 333, 338, 344, 353,
357, 358, 364, 374, 375, 376,
386, 400, 406, 414, 416, 418,
425, 427, 431, 435, 437, 439,
441, 445, 448, 455

U/SQL Adapters

Advanced Use........................ 437

U/SQL Adapters........................ 437

U/SQL Administrator ... 1, 10, 12, 20,
36, 74, 80, 94, 108, 149, 203,
229, 425, 431, 448

U/SQL Administrator Facilities94

U/SQL Client Installation 12, 57, 108,
215

U/SQL Client Installation Files 108

U/SQL Client License

Installing36

Removing36

U/SQL Client License . 10, 12, 35, 36,
52

U/SQL Enterprise Manager 418

U/SQL Error Messages............... 166

U/SQL Manager ...10, 12, 20, 36, 74,
79, 81, 108, 143, 192, 215, 251,
253, 255, 268, 273, 278, 280,
292, 312, 314, 319, 321, 322,
333, 338, 344, 353, 439, 448

U/SQL Manager Error Messages.. 333

U/SQL Record Mapper 386

U/SQL Server Directives92, 314

U/SQL Server Installation on UNIX 98

Index

459

U/SQL Server License

Installing 41

U/SQL Server License . 4, 35, 36, 41,
42, 47, 52, 86

U/SQL Server License Code ...36, 41,
42, 47

U/SQL Service Manager4, 24, 47, 84,
86, 92, 187, 277, 431, 435

UDD

Creating 229

Modifying.............................. 321

UDD ... 1, 10, 24, 30, 67, 74, 79, 81,
92, 94, 98, 101, 102, 108, 109,
110, 113, 119, 121, 126, 137,
139, 140, 143, 150, 170, 192,
198, 203, 215, 227, 229, 236,
237, 239, 240, 246, 251, 253,
255, 260, 273, 276, 280, 285,
292, 317, 319, 321, 322, 330,
333, 338, 341, 344, 351, 357,
364, 375, 376, 386, 396, 397,
400, 416, 418, 425, 439, 441,
445, 448

UDD Error Messages 333

UDD Overview.......................... 227

UDD System Tables

Accessing 441

UDD System Tables 441

UFD Tables 229, 265, 339, 341, 344,
348, 358, 376, 400, 408, 411

ufd_pathnames 400, 408

ufos_array_level..240, 246, 400, 411

ufos_array_object240, 246, 398,
400, 411

ufos_field .. 239, 240, 246, 400, 408,
411, 453

ufos_index.. 398, 400, 408, 411, 414

ufos_index_level400, 408, 411

ufos_object 240, 246, 398, 400, 408,
411

ufos_tab_object ..240, 400, 408, 411

ufos_table .. 246, 400, 408, 411, 415

UnauthorizedAccess (Security
Directive) 187

Universal Business BASIC.......... 375

Universal Business Language..... 150,
375

Universal Data Dictionary Overview
... 227

Universal File Dictionary Overview
... 398

UNIX Client-Side Directives........ 139

UNIX Server

Starting 101

Stopping............................... 101

UNIX Server...... 101, 126, 192, 314,
330, 349, 431

UNIX usqlsd.ini......42, 52, 102, 182,
187, 386

UNIX usqlsd.ini File

Setting up............................. 102

UNIX usqlsd.ini File52, 102

Upgrading UDDs 119

User Administration................... 192

User Data Source........... 73, 74, 137

Using Query Hinting 213

Using the Enterprise Join Engine. 418

USQLCS.LOG File140, 161

usqlcs.msg..........................98, 166

USQLCS.MSG file 140

usqli.... 98, 109, 126, 139, 187, 192,
198, 229, 330, 349, 353, 386,
425, 427, 431

usqli on UNIX Servers 126

usqli utiltiy............................... 126

usqlsd daemon 101

usqlsd.ini file..... 101, 102, 140, 143,
148, 149, 158, 161, 187, 251,
353, 425, 427, 431

V

Validation of Security directives.. 150

Validation Rules........................ 158

Validation Rules for Security
Directives.............................. 158

View or Modify an Exiting Table .. 326

Virtual Columns . 265, 292, 326, 344,
358

Transoft U/SQL User Guide

460

W

Win U/SQLi......10, 12, 74, 109, 110,
113, 116, 117, 119, 121, 161,
192, 198, 203, 229, 349

Win U/SQLi Scripting................. 121

Win U/SQLi SQL Syntax............. 116

Win U/SQLi User Login Security .. 117

Windows U/SQL Server.......... 24, 86

Writing Applications Using U/SQL
Client-Server To Access Your Data
... 222

